
Quasi-Polynomial Time Approximation Schemes for Target

Tracking

Matt Gibson Gaurav Kanade Erik Krohn Kasturi Varadarajan

July 7, 2009

1 Introduction

Target Tracking is the problem of keeping track of a set of specified targets by means of a given
set of sensors. We study the target tracking problem in which the targets lie in the plane and the
sensors are cameras also positioned in the plane. It requires two distinct cameras to estimate the
position of a target. The quality of this estimation depends mainly on the relative position of the
target with respect to that of the two cameras assigned to it [3, 2]. The field of view of a camera is
a cone. A target can be tracked by a camera if it lies in this cone, and therefore a target tracked
by a pair of cameras should lie in the intersection of their respective cones.

Tracking a target in this manner cannot in general provide accurate estimates of position. Hence
it is important to carefully pick and assign pairs of cameras to different targets so as to minimize the
error in estimation. With this setting our problem can be viewed as a resource allocation problem.
For arbitrary error functions, this problem is NP-hard and hard to approximate - belonging to the
class of Multi-Index Assignment Problems [6], but usually the error is some function of the geometry
of the camera and target positions [4]. Other NP-hard versions of multi-index assignment problems
also focus on geometry, such as those aiming to minimize the circumference or the area of a triangle
formed by three assigned points in the plane [7].

The problem we thus consider is the Focus of Attention problem (FoA) which requires us to find
a pairing of cameras and an assignment of camera pairs to a target in a manner that is optimum
for some measure of tracking quality [4, 2]. In our work we shall consider the constrained geometric
setting in which the cameras are stationed on a line in the plane. Past work on this problem has
also focused on this constrained setting [4, 2] and it is likely to model well the scenario in which
targets are at relatively large distances from viable camera positions. Although the cameras cannot
move they can rotate and freely choose their viewing direction. Both the cameras and the targets
are represented by points.

We consider two geometric error metrics. The first is the “Aspect Ratio” which is the ratio of
the vertical distance of the target from the camera line to the distance between the two cameras
dedicated to it. (Refer Figure 1(a).) This metric can be used to gauge the error in stereo recon-
struction and gives a good approximation if the cameras are not too close to the target. It was first
considered by [4].

The second metric is the “Tracking Angle Deviation From Right Angles”, studied by Gfeller
et al. [2], who state that for a pair of cameras tracking a target, the tracking accuracy is best if
the angle at the target - the tracking angle - is closest to 90◦. Thus the considered metric is the

1

�
�
�
�

�
�
�
�

�
�
�
�

ci cj

tk

Zk

bi,j

(a) Aspect Ratio Objective Function

�
�
�
�

�
�
�
�

�
�
�
�

ci cj

bi,j

tk

(b) Tracking Angle Objective Func-
tion

Figure 1: Here cameras ci and cj that are bi,j apart are assigned to target tk which is at a distance
of Zk from the camera line

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

c1 ci cj c2n

tk

tl

Figure 2: Tracking angles are all less than 90◦ if targets are not too close

deviation of the angle from this desired value. (Refer Figure 1(b).) If the targets are not too close
to the cameras, we can assume a scenario in which the tracking angles are all small i.e. less than
90◦. In such a scenario minimizing the deviation from the optimum tracking angle is equivalent to
maximizing the tracking angle. In this paper, we assume that all tracking angles are less than 90◦

and hence our objective is to maximize the tracking angles.
We can assume without loss of generality that all the targets lie on one side of the line on which

the cameras are placed. If they are not, we can consider their projections without affecting either
of our optimization metrics.

Formally, we define the two versions of the FoA problem we consider as follows:
INPUT: A set T of n targets given as points in the plane and a set C of 2n cameras, given as
collinear points on line l in the same plane.
FEASIBLE SOLUTION: A camera assignment where each target is assigned to two cameras and
each camera is assigned to exactly one target.
MEASURE: (1) An Aspect Ratio and (2) A Tracking Angle for every triple consisting of a target
and two cameras.
GOAL: Find a feasible solution which is optimal for the sum of (1) aspect ratios and (2) tracking
angles.

In this paper we consider the problem of (1) minimizing the sum of aspect ratios - the MIN-

2

SUMOFRATIOS problem and (2) maximizing the sum of tracking angles - the MAXSUMOFAN-
GLES problem. For this second problem, we assume that the input has the property that the
tracking angle of every triple is at most 90◦, that is, every target lies outside the Thales’ circle of
any possible camera pair (Figure 2.)

Related Work. Target Tracking is an important research topic in the field of computer vision
and image processing and has applications in environment surveillance and monitoring applications
[8, 2].

Isler et al. [4] first studied target tracking by formulating the Focus of Attention (FoA) problem
as a combinatorial optimization problem. The motivation behind their work was lowering the
costs of optimum depth estimation. They showed that in a general setting (not in the plane)
this comprises the classical NP-Hard 3-Dimensional Matching (3DM) problem as a special case.
Therefore the focus in [4] is on the constrained geometric setting in which all cameras are restricted
to lie on a single line l. The objective is the “aspect ratio” Zk

bi,j
where Zk is the distance of target

tk from l and bi,j is the distance between cameras ci and cj assigned to target tk (also called the
baseline). They give a 2-approximation for the problem of minimizing the sum of aspect ratios
(that is, the MINSUMOFRATIOS problem) and for the problem of minimizing the maximum
aspect ratio. Also, if the cameras are placed equidistantly on the line, they present a PTAS for the
MINSUMOFRATIOS problem. They also consider cameras on a circle and targets inside the circle
with tracking cost being 1

sin θ , where θ is the tracking angle, and deliver a 1.42-approximation for
the problem of minimizing the the sum of tracking costs, and the maximum tracking cost.

Gfeller et al. [2] show that the problem of minimizing the sum of the deviations of tracking
angles from 90◦ (best tracking angle for accuracy) is NP-Hard, and that it admits no (multiplicative)
approximation. For cameras on a line, they present a 2-approximation algorithm for the problem
of maximizing the sum of tracking angles (that is, MAXSUMOFANGLES) and maximizing the
minimum tracking angle (or the bottleneck angle) under the assumption that all tracking angles
are less than 90◦. Also, if the cameras are placed equidistantly on the line, they present a PTAS
for the MAXSUMOFANGLES problem. Arkin and Hassin [1] give a 2 + 1

t approximation for the
problem of maximizing the sum of tracking angles with cameras lying on a line (Here, t is the size
of the local neighborhood in the local-search algorithm).

Our Contribution and Techniques. We consider the FoA problem that asks for camera as-
signment with minimum sum of Aspect Ratios (MINSUMOFRATIOS) and FoA that asks for
camera assignment with maximum sum of tracking angles (MAXSUMOFANGLES). For cameras
on a line, (and targets not lying in the Thales’ circle of any camera pair) we present a Quasi-
PTAS for MAXSUMOFANGLES. For cameras on a line, we present a Quasi-PTAS also for the
MINSUMOFRATIOS problem. A Quasi-PTAS is an algorithm that, for any constant 0 < ǫ < 1,
returns a solution whose cost is within an additive ǫ factor of the optimal and has time complex-
ity npolylog(n). Thus we improve upon the constant factor approximations known for these two
problems, using quasi-polynomial rather than polynomial time.

It is evident that the powerful geometric structure underlying the Focus of Attention Problem
sets it apart from the more general assignment problems and makes it interesting. This geometry
has been exploited in various ways by [4, 2] to obtain efficient approximation algorithms. In
particular in both these efforts the cameras are divided into two sets of equal size and classified as
“left” cameras and “right” cameras. Also in the special case of cameras placed equidistantly on the

3

line both [4, 2] use the technique of further partitioning both the left and right cameras and then
guessing the number of camera pairs in the optimal solution for each pair of blocks of the partition.

We also make use of the concept of left and right cameras; we extend the partitioning technique
to cameras spaced arbitrarily on the line by making use of an intelligent discretization process. The
main idea is to partition the interval containing the left (and right) cameras into a small number
of intervals called “buckets”, and guess the number of camera pairs between every pair of buckets
in the optimal solution.

In the MAXSUMOFANGLES problem, if we guess that there are T camera pairs involving
buckets B and B′, we cannot simply return T arbitrary pairs involving cameras in B and B′. Some
of these pairs can be too “sensitive” for this crude process. Luckily, we get around this difficulty
via a geometric observation about angles which implies that a sensitive pair can be sensitive at its
B-end or its B′-end but not both.

For the MINSUMOFRATIOS, the issue of sensitive pairs does not arise, but the main difficulty
is that there is no single “scale” of distances at which we can apply the discretization. (This
difficulty would not arise if the ratio of the maximum inter-camera distance to the minimum inter-
camera distance is polynomially bounded.) So we first apply the discretization at the scale of
the median inter-camera distance (in the optimal solution), and recursively obtain and solve two
independent instances of the problem with size at most n/2. A characterization due to Isler et
al.[4] of the optimal solution for a fixed camera pairing with the targets turns out to be quite useful
in making this approach work.

Organization of the paper. In Section 2, we introduce some notation, review some important
observations made in previous work on these problems, and give a high level overview of our
algorithms. We present our algorithms for MAXSUMOFANGLES and MINSUMOFRATIOS in
Sections 3 and 4, respectively.

2 Preliminaries and Notation

Suppose we have some horizontal line l and a set C of 2n cameras such that each camera lies on l.
We call the ith camera on the line ci. For ci, cj ∈ C, we say ci < cj if ci is to the left of cj on l. We
assume that no two cameras have the same position, and thus we have c1 < c2 < . . . < c2n. We
are also given a set T = {t1, t2, . . . , tn} of targets that lie in the plane. Without loss of generality,
we can assume that all of the targets lie above l. The distance between cameras ci and cj is called
the baseline of ci and cj and is denoted bi,j. A camera pair is a set of two distinct cameras, and a
camera pairing of a set C ′ of 2m cameras is a set of m camera pairs such that each camera in C ′

appears in exactly one of the camera pairs.
A pairing of cameras is all-overlapping if the baselines of any two camera pairs in the pairing

intersect. Suppose there is a camera pairing that contains pairs (ci, cj) and (ci′ , cj′) such that
ci < cj < ci′ < cj′ (i.e. the pairing is not all-overlapping). It is easily seen [2] that we can do better
for both objective functions if we use the pairs (ci, ci′) and (cj , cj′). Refer Figure 3. This leads
to the observation [2] that there is an optimal camera pairing where every camera pair (ci, cj) has
i ∈ {1, 2, . . . , n} and j ∈ {n + 1, n + 2, . . . , 2n}. Let M denote the midpoint of bn,n+1. See Figure
4. Another way to view this observation is that there is an optimal solution with camera pairing P
such that for all pairs (ci, cj) ∈ P , ci is to the left of M and cj is to the right of M . Our algorithms
will only consider such camera pairings.

4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tk

tl

Zk Zl

ci cj ci′ cj′

Figure 3: For both objective functions, we can do better if we overlap the camera pairs (see dotted
lines).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
���

c1 c2 c3 c4 c5 c6

Right Cameras (R)Left Cameras (L)

M

Figure 4: In this example n = 3, cameras c1, c2, c3 are “left” cameras and the rest are “right”
cameras. M is the mid-point of baseline b3,4 formed by cameras c3 and c4.

5

We shall now present an overview of our algorithms. Although historically the “Aspect Ratio”
objective function was considered first [4], it was shown in [2] that the “Tracking Angle” is in
general the most influential way of tracking quality directly. Hence we shall consider this metric
first. Both algorithms use a discretization procedure to aid in computing our solution. However,
a crude discretization procedure will not suffice for either problem, and we must use a more clever
technique. In the case of MAXSUMOFANGLES, a geometric observation comes to our rescue. In
the case of MINSUMOFRATIOS, a more sophisticated discretization process comes to our rescue.

First consider the MAXSUMOFANGLES problem. Our algorithm constructs a small number
of camera “pairings” - (a pairing is simply the set formed when each camera is paired with exactly
one other camera). Given this set of camera pairings, we then are able to determine which camera
pairing is the best by using a polynomial time algorithm for minimum-weight perfect matching on
a bipartite graph in which one set of vertices is the camera pairs [5] and the other is the targets ,
as observed by Gfeller et al. [2].

Suppose we fix some optimal solution that uses some all-overlapping camera pairing P . That
is, every camera pair in P involves one camera to the left of M and one to the right of M . We
discretize the line into a small number of buckets such that the length of each bucket is small
compared to its distance from M . Consider a bucket on one side of M and another bucket on the
other side of M . Suppose we are able to correctly guess that the number of camera pairs in P
that have one camera in each of these buckets is µ. We would like to be able to arbitrarily pick
µ cameras from the first bucket and pair them with an arbitrary µ cameras in the second bucket
and argue that the tracking angle formed by these camera pairings at the target will not be too
small as compared to the one formed by the corresponding pair in P . Unfortunately, this approach
will not work, as the arbitrary assignment might cause some tracking angle to be more than an ǫ
factor smaller than the corresponding angle in P . To get around this obstacle, we state and prove
a geometric lemma (Lemma 2) which allows us to handle these “sensitive” cases. The algorithm is
then to guess the number of such “sensitive” cases that arise for each of our buckets. We handle
those camera pairs (relying heavily on our lemma), and then we use the more crude technique on
all of the remaining cameras falling in buckets. If any cameras still remain to be paired, we show
that there is an easy way to pair them off (again making use of the same lemma).

Now consider the MINSUMOFRATIOS problem. Suppose we fix some optimal solution that
uses some all-overlapping camera pairing P . Let bi denote the ith baseline in P when the baselines
are indexed such that b1 ≤ b2 ≤ · · · ≤ bn. The high level idea of our algorithm is that we will guess
the length of the median baseline (i.e. bn/2) and then guess all camera pairs in P whose baselines are
within a polynomial factor of bn/2. To aid us in guessing, we use a discretization procedure. This
procedure allows us to make all possible guesses in quasi-polynomial time while not doing too much
worse than what the optimal solution would have done. Suppose that we make a correct guess.
Then we will have correctly guessed all camera pairs in P whose baselines fall within some interval
[bi, bj] for bi ≤ bn/2 ≤ bj up to an ǫ factor. We then recursively repeat this guessing procedure for
baselines in the interval [b1, bi−1] and the interval [bj+1, bn]. The correctness of the algorithm then
follows by showing that the errors do not accumulate too much over the course of the recursion.

Fix a camera pairing P and a set of targets T such that |P | = |T |. The optimal association of
camera pairs in P with targets in T is rather easy to compute, using a characterization given by
Isler et al. [4]:

Lemma 1. Let Zi be the distances of targets in T from line l, Z1 ≤ Z2 ≤ · · · ≤ Zm and bi be the
baselines in P sorted such that b1 ≤ b2 ≤ · · · ≤ bm. There exists an optimal matching such that the

6

target at depth Zi is assigned to the pair with baseline bi.

We denote the cost of such an assignment of a pairing P to targets T as cost(P, T) and we
compute it according to the assignment in Lemma 1.

3 Maximizing the Sum of Angles

We now describe our approximation algorithm for the MAXSUMOFANGLES problem. We adopt
the notation of Section 2 – the camera locations are c1 < c2 < · · · < c2n on line l , with cn <
M < cn+1. The targets are points in the plane above the line, and denoted t1, . . . , tn. Let ǫ > 0 be
the given approximation parameter; we may assume that ǫ < 1/2. Our algorithm outputs a small
number of camera pairings of C. One of the camera pairings that we output will have the property
that it is possible to associate each of the camera pairs in it with targets in such a way that the
sum of the angles at the targets is at least (1 − ǫ) times that of OPT, where OPT is the value of
the sum of tracking angles in an optimal solution. For a given camera pairing, we can compute the
best association with the targets using a polynomial time algorithm for minimum-weight perfect
matching [5], as observed by Gfeller et al. [2]. We can therefore evaluate all of the camera pairings
that we output, and return the best one.

Our algorithm makes use of a subroutine for partitioning an interval to achieve a result of the
following form: Given 0 < γ1 < γ2, partition the interval [M + γ1,M + γ2] (resp. [M − γ2,M − γ1]
) into buckets (sub-intervals), so that the distance between the left (resp. right) endpoint of each
bucket from M is at least 1

ǫ2 times the bucket length. We will call a partition of [M + γ1,M + γ2]
(resp. [M − γ2,M − γ1]) with this property a conforming partition. Clearly, we can compute a

conforming partition with O
(

log(γ2/γ1)
ǫ2

)

buckets: partition [M + γ1,M + 2γ1] into 1/ǫ2 equal sized

buckets, then partition [M + 2γ1,M + 4γ1] into 1/ǫ2 equal sized buckets, and so on until we are
past M + γ2. We also adopt the following notation for the algorithm: L will denote the cameras
to the left of M , and R the cameras to the right. During the course of the algorithm, some of the
cameras get paired, and L (resp. R) will always stand for the unpaired cameras. Given a bucket B
to the left (resp. right) of M , we will let |B| denote the number of cameras in the current L (resp.
R) that fall in bucket B. Finally, let a = M − c1, and d = c2n −M . In describing the algorithm
and analysis, we will assume a ≤ d; the other case is symmetric. See Figure 5 for an illustration.

The Algorithm. The following algorithm outputs one candidate pairing of the cameras C for
each combination of the functions σ, π, µ, and λ considered. We then evaluate each of these pairings
based on the stated criterion (MAXSUMOFANGLES) and return the best one.

Running Time. We will now bound the running time of the algorithm by bounding the number
of possibilities that the mappings σ, π, and µ consider. We can bound the number of cameras in
any bucket by n. Thus we can bound the number of possibilities for σ by nO(k), and we can bound
the number of possibilities for π by nO(j). We can bound the number of possibilities for µ by nO(kj).

Because the number of buckets j and k are bounded by O
(

log(n/ǫ)
ǫ2

)

, we have that the running

time of the algorithm is bounded by

n
O

„

log2(n/ǫ)

ǫ4

«

.

This expression also bounds the number of candidate pairings of C that are output

7

c2n

M

c1

da

l
.

1

ǫ2
buckets of equal length

1

ǫ2
buckets of equal length

(M + γ1) (M + 2γ1) (M + 4γ1) (M + 8γ1)(M − γ1)(M − 2γ1)(M − 4γ1)

Figure 5: Illustration for a conforming partition (the intervals on l are not drawn to scale). Each
of the shown subintervals of l (except for [M − γ1,M] and [M,M + γ1]) are divided into 1

ǫ2
buckets

of equal length.

α1

θ

α2

ǫθ ǫθ

w

t

x z2

z1

z′

1

z′

2
y2

y1

Figure 6: Illustration for Lemma 2. For α2 > α1,
|xz′2|
|xz2|

>
|xz′1|
|xz1|

.

Approximation Factor. Let αt denote the target angle corresponding to target t ∈ T in the
optimal solution OPT. We now show that there is one choice of the functions σ, π, µ, and λ for
which it is possible to associate the candidate pairing output by our algorithm to the targets in
such a way that the target angle βt in this solution for any target t satisfies

βt ≥ αt − 4max{ǫαt,
ǫ

n2

∑

t

αt}. (1)

Adding this inequality for each t ∈ T gives
∑

t βt ≥ (1 − 4ǫ)
∑

t αt, establishing the algorithm’s
correctness. In order to establish this inequality, we will find it convenient to move the cameras
as part of the analysis; this will be safe because we only move towards M . For each target t, let
l(t) and r(t) initially denote the cameras associated with t in OPT to the left and right of M ,
respectively. As we modify the association of targets with camera pairs in the analysis, l(t) and
r(t) will change. At all times, βt will denote the angle l(t)tr(t). The following geometric lemma,
whose proof we present in the appendix, plays a crucial role in the analysis. Refer Figure 6.

8

Algorithm 1

1: Let B0 be the bucket [M− ǫa
100n2 ,M]. Let B1, . . . , Bk be the buckets resulting from a conforming

partition of [M − a,M − ǫa
100n2].

2: for each map σ : {B1, . . . , Bk} → Z
+ such that σ(Bi) ≤ |Bi| do

3: For each 1 ≤ i ≤ k, pair the σ(Bi) leftmost cameras in Bi with the σ(Bi) leftmost cameras
in R arbitrarily.

4: Let B′
0 be the bucket [M,M + ǫa

100n2]. Let B′
1, . . . , B

′
j be the buckets resulting from a con-

forming partition of [M + ǫa
100n2 ,M + a

ǫ2
].

5: for each map π : {B′
1, . . . , B

′
j} → Z

+ such that σ(B′
i) ≤ |B

′
i| do

6: For each 1 ≤ i ≤ j, pair the π(B′
i) rightmost cameras in B′

i with the π(B′
i) rightmost

cameras in L arbitrarily.
7: for each map µ : {B0, . . . , Bk} × {B

′
0, . . . , B

′
j} → Z

+ such that
∑

ℓ µ(Bi, B
′
ℓ) ≤ |Bi| for

every i ≤ k and
∑

ℓ µ(Bℓ, B
′
i) ≤ |B

′
i| for every i ≤ j do

8: Go through the (Bi, B
′
ℓ) pairs in any order and arbitrarily pair µ(Bi, B

′
ℓ) cameras from

L ∩Bi with µ(Bi, B
′
ℓ) cameras from R ∩B′

ℓ.
9: for each 0 ≤ λ ≤ |B| where B is the bucket [M − a,M] do

10: Pair the λ leftmost cameras in L∩B = L with the λ leftmost cameras in R arbitrarily.
11: Pair the remaining cameras in L arbitrarily with cameras in R.

Lemma 2. Let x, y, t be three non-collinear points in the plane such that angle(xty) = θ. Let z
and z′ be two points on the line xy such that both z and z′ lie between x and y and angle(xtz) =

angle(ytz′) = ǫ ·θ. Recall that 0 < ǫ < 1/2. Then the ratio |xz′|
|xz| ≤

1
ǫ2

where |xz|, |xz′| are the lengths

of segments xz, xz′ respectively.

Fixing σ. In this step, let us call a target t sensitive if l(t) lies in bucket Bi for i ≥ 1 (so not in the
first bucket B0), and the angle l(t)tp is at least ǫ times the angle βt = l(t)tr(t), where p is the right
endpoint of bucket Bi. Since the buckets come from a conforming partition, Lemma 2 implies that
for a sensitive t the angle l(t)tc for any camera c to the right of M is at least (1− ǫ)βt. (The upshot
is that we have to be careful in changing l(t), but we have considerable flexibility with r(t).) Fix σ
so that σ(Bi) is the number of sensitive targets t with left endpoints within Bi. With this choice of
σ, recall that our algorithm fixes

∑

i σ(Bi) camera pairs at this stage. Now for each sensitive t, reset
l(t) so that it lies to the left of (or is the same as) the original l(t) and is one of the σ(Bi) leftmost
points in its bucket Bi, and reset r(t) to be the camera that is paired with the new l(t) in the
partial camera pairing that is fixed. It follows that now βt ≥ (1− ǫ)αt ≥ αt −max{ǫαt,

ǫ
n2

∑

t αt}
for all sensitive t. The association of sensitive t with the camera pairing we output is finalized now,
and hence Inequality 1 holds for such t.

For the t that are not sensitive, reset l(t) to be some other camera in the same bucket as the
original l(t) and reset r(t) to be a camera that is the same or to the right of the original r(t).
(During these resettings, we always ensure that each camera is l(t) or r(t) for exactly one t.) Now
“move” the camera that is l(t) for each such t to the right endpoint of the bucket containing l(t).

For a t that is not sensitive and for which l(t) does not lie in bucket B0, it is clear that the new
βt is at least (1 − ǫ) times the original βt. Now if l(t) lies in B0, letting p1 and p2 denote the left

9

c1 c2n

t

p2p1

Figure 7: A figure to illustrate that angle(p1tp2) is very small compared to angle(c1tc2n).

and right endpoints of B0, we argue that now

βt ≥ αt − angle(p1tp2) ≥ αt −
ǫ

n2
angle(c1tc2n) ≥ αt −

ǫ

n2

∑

t

αt.

For the second inequality, we show that angle(p1tp2) ≤
ǫ

n2 angle(c1tc2n); we omit from this version
the somewhat tedious argument for this claim, but note that it is here that we use the fact that t
is outside the circle with diameter c1c2n. See Figure 7 for a figure to provide intuition for why the
claim holds.

Thus, for the t that are not sensitive, we have

βt ≥ αt −max{ǫαt,
ǫ

n2

∑

t

αt}.

We move on to the next stage with the targets t whose association with camera pairings has
not been finalized (the targets that were not sensitive in this stage), along with the cameras l(t)
and r(t) for such targets (the cameras that have not been paired up by our algorithm).

Fixing π. This is quite symmetric to the previous step. Among the targets that have moved on
to this step, let us call a target t sensitive if r(t) lies in bucket B′

i for i ≥ 1 (so not in the first
bucket B′

0), and the angle ptr(t) is at least ǫ times the angle βt = l(t)tr(t), where p is the left
endpoint of bucket B′

i. Since the buckets come from a conforming partition, Lemma 2 implies that
for a sensitive t the angle ctr(t) for any camera c to the left of M is at least (1− ǫ)βt. Fix π so that
π(B′

i) is the number of sensitive targets t with r(t) within B′
i. With this choice of π, recall that our

algorithm now fixes
∑

i π(B′
i) camera pairs at this stage. Now for each sensitive t, reset r(t) so that

it lies to the right of (or is the same as) the original r(t) and is one of the π(B′
i) rightmost points in

its bucket B′
i, and reset l(t) to be the camera that is paired with the new r(t) in the partial camera

pairing that is now fixed. It follows that for all sensitive t, the current βt is at least (1 − ǫ) times
the βt at the end of the previous step, and thus βt ≥ αt − 2max{ǫαt,

ǫ
n2

∑

t αt}. The association
of sensitive t with the camera pairing we output is finalized now, and hence Inequality 1 holds for
such t.

For the t that are not sensitive, reset r(t) to be some other camera in the same bucket as the
original r(t) and reset l(t) to be a camera that is the same or to the left of the original l(t). Now
“move” the camera that is r(t) for each such t to the left endpoint of the bucket containing r(t).

10

For a t that is not sensitive, we can argue along the same lines as in the previous step to conclude
that βt ≥ αt − 2max{ǫαt,

ǫ
n2

∑

t αt}.
We move on to the next stage with the targets t whose association with camera pairings has

not been finalized (the targets that were not sensitive in this stage), along with the cameras l(t)
and r(t) for such targets (the cameras that have not been paired up by our algorithm).

Fixing µ. For every pair 0 ≤ i ≤ k and 0 ≤ i′ ≤ j, fix µ(i, i′) to be the number of surviving
targets t with l(t) ∈ Bi and r(t) ∈ B′

i′ . With this choice of µ, recall that our algorithm outputs
µ(i, i′) pairs of cameras at this stage with one endpoint in Bi and the other in B′

i′ . Reassign the
l(t) and r(t) values for the surviving targets (this reassignment should not cause an l(t) or r(t)
value to move to a different bucket), if necessary, so that these µ(i, i′) pairs that are output by
the algorithm are assigned to the targets that led to the definition of µ(i, i′). The association of
such targets with the camera pairing that we output is finalized at this stage. Notice that βt does
not change for any target in this step, whether it is finalized or not. This is because the cameras
have already been moved to endpoints of the bucket they belong to. In particular, this means that
Inequality 1 holds for the targets that do not survive this stage.

We now move to the final stage with the targets that survive. Note that the l(t) for such targets
belong to the bucket B = [M − a,M], and the r(t) ≥M + a

ǫ2
.

Fixing λ. In this step, call a surviving target t sensitive if angle(l(t)tM) ≥ ǫ·angle(l(t)tr(t)) = ǫβt.
Lemma 2 implies that for a sensitive t the angle l(t)tc for any camera c to the right of M + a

ǫ2
is

at least (1− ǫ)βt. Fix λ to be the number of such sensitive targets t. With this choice of λ, recall
that our algorithm fixes λ camera pairs at this stage. Now for each sensitive t, reset l(t) so that
it lies to the left of (or is the same as) the original l(t) and is one of the λ leftmost points in its
bucket B, and reset r(t) to be the camera that is paired with the new l(t) in the partial camera
pairing that is fixed. It follows that for sensitive t, the new βt is at least (1− ǫ) times the βt before
this step, and thus βt ≥ αt − 3max{ǫαt,

ǫ
n2

∑

t αt}. The association of sensitive t with the camera
pairing we output is finalized now, and hence Inequality 1 holds for such t.

For the t that are not sensitive, reset l(t) to be some other camera in B, and reset r(t) to be a
camera that is the same or to the right of the original r(t). Move the camera l(t) to the point M .
The new βt is at least (1− ǫ) times the βt before this step, and thus βt ≥ αt−3max{ǫαt,

ǫ
n2

∑

t αt}.
By reassigning l(t), if necessary, but not the r(t), the camera pairs that the algorithm outputs

now will have the form (l(t), r(t)) for each surviving t. This completes the association for all the
targets. This reassignment does not change βt because each l(t) is on point M , and Inequality 1
holds for every t.

This completes our argument about the approximation guarantee.

Theorem 3. There is an algorithm for the MAXSUMOFANGLES problem that, for any 0 < ǫ < 1,
runs in quasi-polynomial time and returns a solution in which the sum of tracking angles is at least
(1− ǫ) times that in the optimal solution.

4 Minimizing the Sum of Ratios

We now present our algorithm for the MINSUMOFRATIOS problem. Recall that in this problem
the cost of assigning a camera pair (ci, cj) to target tk is Zk

bi,j
where Zk is the vertical distance

11

between tk and the line l containing the cameras, and bi,j is the baseline corresponding to (distance
between) ci and cj . We would like to minimize the sum of these costs. In this section, we present
an algorithm that returns a solution whose cost (sum of aspect ratios) is no worse than (1 + ǫ)
times the same in the optimal solution, in quasi-polynomial time for any ǫ > 0.

The Algorithm. Our algorithm is recursive and is formally defined as Algorithm 2. The algo-
rithm takes as input a set of 2m cameras X, a set of m targets Y , and two positive real numbers ℓ
and u. The cameras are indexed x1, x2, . . . x2m such that x1 < x2 < · · · < x2m and xm < M < xm+1

and the targets are indexed y1, y2, . . . ym such that Z1 ≤ Z2 ≤ · · · ≤ Zm. The algorithm will return
a camera pairing P of the cameras in X such that the baselines of all of the pairs in P are at
least ℓ and are at most u. If no such pairing is possible, our algorithm returns a “dummy” camera
pairing I; for ease of description, we define cost(P, T) =∞ for any pairing P that contains I. Our
algorithm breaks up the line l into intervals called buckets. We will use |d| to denote the number
of cameras in X that lie in bucket d. We assume 0 < ǫ < 1/2.

Algorithm 2 minRatioPair(X,Y, ℓ, u)

1: If |X| = 0, return the empty set.
2: Let L be the set of all baselines bi,j such that 1 ≤ i ≤ m, m + 1 ≤ j ≤ 2m, and ℓ ≤ bi,j ≤ u.
3: Set local variable best←∞, and Pbest ← I.
4: for each β ∈ L do

5: Partition the interval [M − 2nβ,M] into O(log n
ǫ) buckets in the following way. Initialize

r = M .
6: for i = −1, 0, 1, . . . , 2 log n do

7: Discretize the interval [r − 2i β
n , r] into 2

ǫ buckets of equal length.

8: r ← 2i β
n

9: Symmetrically partition the interval [M,M + 2nβ] into O(log n
ǫ) buckets.

10: Let B1 denote the set of all buckets to the left of M , and let B2 denote the set of buckets to
the right of M .

11: for each map µ : B1 × B2 → Z+ and each map σ : B1 ∪ B2 → Z+ such that σ(B) +
∑

B′∈B2
µ(B,B′) ≤ |B| for each B ∈ B1, σ(B′) +

∑

B∈B1
µ(B,B′) ≤ |B′| for each B′ ∈ B2,

and
∑

B∈B1
σ(B) =

∑

B′∈B2
σ(B′) do

12: Xshort ← ∅,Xmid ← ∅,Xlong ← ∅, Pmid ← ∅
13: Go through each (B,B′) ∈ B1 × B2 in any order and pair the µ(B,B′) cameras in B that

are closest to M with the µ(B,B′) cameras in B′ that are closest to M and place these
pairs in Pmid. Add these cameras to Xmid and remove them from their respective buckets.

14: For each bucket B ∈ B1 ∪ B2: Of the cameras that remain in B, place the σ(B) cameras
that are farthest from M into Xshort. Place all other remaining cameras in B into Xlong.

15: Denoting ms ≡
|Xshort|

2 and mmid ≡
|Xmid|

2 , let Yshort = {y1, y2, . . . , yms}, Ymid =
{yms+1, yms+2, . . . , yms+mmid

}, and Ylong = {yms+mmid+1, . . . , ym}.
16: if |Yshort| ≤ m/2 and |Ylong| ≤ m/2 then

17: P ← Pmid ∪ minRatioPair(Xshort, Yshort, ℓ, (1 + ǫ) β
2n) ∪ minRatioPair(Xlong, Ylong, (1 −

ǫ)2nβ, u(1 + ǫ))
18: If cost(P, Y) < best, then best← cost(P, Y) and Pbest ← P .
19: Return Pbest.

12

. . .

β
2n

β
n

nβ 2β
n

M

2

ǫ
buckets of equal length

2

ǫ
buckets of equal length

Figure 8: Illustration for the discretization process. The value in each interval denotes the length
of the interval. Each interval is divided into 2

ǫ buckets of equal length.

B

M
B

′

l

Figure 9: Illustration for the step in algorithm where the bucket pair (B,B′) contributes to Xmid.
The filled in cameras will be paired up and placed into Xmid for µ(B,B′) = 2

For solving the input instance of MINSUMOFRATIOS, we invoke minRatioPair(C, T, bn,n+1, b1,2n).
For this invocation, note that the depth of the recursion is at most log n, because the size of Y
falls by a factor of 2 with each recursive call. It will also be useful to note that when we make a
recursive call, the lower bound ℓ for the recursive call is not smaller than the original ℓ; the upper
bound u for the recursive call can be larger than the original, but only by a factor of (1 + ǫ).

Running Time. We will now show that Algorithm 2 runs in quasi-polynomial time when the
instance minRatioPair(C, T, bn,n+1, b1,2n) is invoked. The set L contains O(m2) elements. The

number of buckets in B1 ∪ B2 is O(log n
ǫ). This means that the number of choices of µ and σ is at

most (m + 1)O(log2 n

ǫ2
). Thus we make (m + 1)O(log2 n

ǫ2
) = nO(log2 n

ǫ2
) direct recursive calls. Since the

depth of the recursions is at most log n, this gives us our quasi-polynomial running time.

Approximation Ratio. We now give an argument for the approximation factor guaranteed
which, though informal, highlights the main issues. Consider the optimal pairing POPT for the
input instance with cameras C and targets T , and the optimal association of targets in T with
cameras in POPT . We show we can associate each target t with a camera pair in such a way that
(a) these camera pairs form a camera pairing of C, (b) the baseline of the camera pair associated
with each t is at least (1 − 5ǫ) times the corresponding baseline in POPT , and (c) our algorithm
outputs a solution that is at least as good as this association. Thus, we obtain our (1 + O(ǫ))
approximation factor.

Let us describe how this special association is constructed. Let us start with the optimal

13

association of each t ∈ T with the corresponding camera pair in POPT , and consider the invocation
minRatioPair(C, T, bn,n+1, b1,2n). Consider the situation where the algorithm chooses β to be the
median baseline in POPT . With this β it computes bucket sets B1 and B2. The pairs in POPT can be
split into three sets: those whose baselines are strictly smaller than β/2n (the short baselines), those
whose baselines are between β/2n and 2nβ (the medium baselines), and those whose baselines are
strictly larger than 2nβ (the long baselines). Consider the algorithm’s choice of µ so that µ(B,B′)
equals the number of medium baselines with endpoints in B and B′, and the choice of σ so that
σ(B) equals the number of cameras in B that are endpoints of short baselines. Notice that with
this choice of µ the algorithm constructs sets Yshort, Ymid, and Ylong of sizes ms =

∑

B σ(B),
mmid =

∑

(B,B′) µ(B,B′), and m −ms −mmid, respectively, and sets Xshort, Xmid, and Xlong of
sizes 2ms, 2mmid, and 2(m − ms − mmid), respectively. It also constructs a pairing Pmid of the
points in Xmid. We show that from POPT we can obtain also a pairing Pshort of Xshort and a pairing
Plong of Xlong, and modify our initial association of targets so that:

1. Each target in Ymid is associated with a pair in Pmid which is at most (1 − ǫ) times shorter
than the pair it was initially associated with.

2. Each target in Yshort is associated with a pair in Pshort that is at least as long as the pair it
was associated with.

3. Each target in Ylong is associated with a pair in Plong that is shorter than the original pair it
was associated with by at most an additive ǫ2nβ.

(In addition, baselines in Pshort have length at most (1+ǫ) β
2n , and this explains the upper bound

in the recursive call minRatioPair(Xshort, Yshort, ℓ, (1+ǫ) β
2n). Similarly for the other recursive call.)

At this point, we have finalized our special association for targets in Ymid. This is the association
in (1) above; notice that we lose only a (1 − ǫ) factor. For the targets in Yshort, we “recursively”
construct the special association in this way starting with the new association with Pshort and
following the recursive call minRatioPair(Xshort, Yshort, ℓ, (1 + ǫ) β

2n). Similarly for the targets in
Ylong.

Notice that the baselines associated with targets in Yshort have not shrunk; the baselines asso-
ciated with targets in Ylong may have shrunk, but by at most an additive ǫ2nβ. Now for a given
target t, how much shrinkage can it experience as we recursively construct our special association?
This is no more than the sum of the ǫ2nβ terms over all the β’s that it sees and for which it is
in Ylong. Now, Lemma 4 implies that this can be bounded by a geometric series that is at most
4ǫnβ for the largest β it is in Ylong for. And this in turn means that in our special association, t is
associated with a baseline that is at least (1− 5ǫ) times the corresponding baseline in POPT .

Lemma 4. Consider two recursive calls made by the algorithm where the second recursive call is
nested (possibly by several levels) within the first. Let β1 denote the choice of β in the first call
within which the second call is contained, and let β2 denote any choice of β within the second call.
Then either β2 ≥ 2β1 or β2 ≤ β1/2.

Proof. The immediate recursive calls that we make from the first call with β1 either have an upper
bound of (1 + ǫ)β1

2n or a lower bound of (1 − ǫ)2nβ1. Now lower bounds do not decrease with
recursion in our algorithm, so β2 > (1− ǫ)2nβ1 ≥ 2β1 (ǫ < 1/2) if the second call is nested within
an immediate call of the latter type. Upper bounds may increase with recursion but only by a factor

14

of (1 + ǫ), and since the depth of recursion is less than log n, we have β2 ≤ (1 + ǫ)log n β1

2n ≤ β1/2 if
the second call is nested within an immediate call of the former type.

Theorem 5. There is an algorithm for MINSUMOFRATIOS that, for any parameter 0 < ǫ < 1,
runs in quasi-polynomial time and returns a solution whose cost is at most (1+ ǫ) times that of the
optimal solution.

References

[1] Esther M. Arkin and Refael Hassin. On local search for weighted k-set packing. In Rainer E.
Burkard and Gerhard J. Woeginger, editors, ESA, volume 1284 of Lecture Notes in Computer
Science, pages 13–22. Springer, 1997.

[2] Beat Gfeller, Matús Mihalák, Subhash Suri, Elias Vicari, and Peter Widmayer. Angle opti-
mization in target tracking. In Joachim Gudmundsson, editor, SWAT, volume 5124 of Lecture
Notes in Computer Science, pages 65–76. Springer, 2008.

[3] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521623049, 2000.

[4] Volkan Isler, Sanjeev Khanna, John R. Spletzer, and Camillo J. Taylor. Target tracking with
distributed sensors: The focus of attention problem. Computer Vision and Image Understand-
ing, 100(1-2):225–247, 2005.

[5] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications
(Originally published in 1976), 2001.

[6] Frits C. R. Spieksma. Chapter 1: Multi index assignment problems: Complexity, approximation,
applications.

[7] Frits C. R. Spieksma and Gerhard J. Woeginger. Geometric three-dimensional assignment
problems. European Journal of Operational Research, 91(3):611–618, June 1996.

[8] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM Comput.
Surv., 38(4):13, 2006.

A Proof of Lemma 2

Denote angle(txy) by α. For greater values of α, the rays
−→
ty and

−→
xy meet further apart and in

the limiting case i.e. for α = π − θ these become parallel. Thus, we are interested in the range

0 < α < π − θ. First we shall show that within this range as α increases, the ratio |xz′|
|xz| strictly

increases. Then we shall show that in the limiting case - i.e. when α→ π− θ, the ratio |xz′|
|xz| →

1
ǫ2

.
This will complete the proof.

For the first part, refer back to Figure 6. Here we consider two different values of α such that
0 < α1 < α2 < π − θ. Let y1, z1, z

′
1 and y2, z2, z

′
2 denote the corresponding points as defined before

for these two cases.

15

ǫθ

ǫθ

x t

z

z′

y′

θ

Figure 10: Illustration for Lemma 2. In the limiting case, the ratio |xz′|
|xz| is at most 1

ǫ2 .

Now consider the line through z′1 that is parallel to xy2. Let this line intersect the line tz2 at
point w. Now clearly △z1xz2 and △z1z

′
1w are similar since two of their angles are equal. Hence,

|z′1w|
|xz2|

=
|z1z′1|
|z1x| . But clearly |z2z

′
2| > |z′1w|. Hence, we have

|z2z′2|
|xz2|

>
|z1z′1|
|xz1|

. This clearly implies
|xz′2|
|xz2|

>
|xz′1|
|xz1|

. Thus as α increases our ratio increases.
For the second part, refer to Figure 10. We consider the limiting case in which α = π − θ.

As we observed before in this case rays
−→
ty and

−→
xy become parallel. Let y′ be the point on ty

at a distance |xz′| from t, so that we have the parallelogram txz′y′. In this scenario, △txz is
similar to △ty′z′ (The Figure is not to scale). This is because angle(xtz) = angle(y′tz′) = ǫ · θ
and angle(txz) = angle(ty′z′) since these are opposite angles of parallelogram txz′y′. Now, due

to similarity of triangles △txz and △ty′z′, |xz|
|y′z′| = |tx|

|ty′| . Hence, |ty′| = |tx||y′z′|
|xz| . But note that

|ty′| = |xz′| and |y′z′| = |tx| since these are opposite sides of the parallelogram.

After plugging in these values we have |xz′|
|xz| = |tx|2

|xz||xz| = |tx|2

|xz|2
. By applying the sine rule in

△txz, we have |tx|

sinangle(tzx)
= |xz|

sinangle(xtz)
. But note that angle(xtz) = ǫ · θ and angle(tzx) =

angle(zty) = (1− ǫ) · θ since these form a pair of alternate angles between parallel lines ty′ and xz′

cut by transversal tz.
Hence we have (|tx|

|xz|)
2 = (sin (1−ǫ)θ

sin ǫ·θ)2 ≤ (1−ǫ
ǫ)2 ≤ 1

ǫ2
.

Thus |xz′|
|xz| ≤

1
ǫ2

16

