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Abstract

The terrain guarding problem and art gallery problem are two ar-
eas in computational geometry. Different versions of terrain guarding
involve guarding a discrete set of points or a continuous set of points
on a terrain. The art gallery problem has versions including guarding
an entire polygon by a set of discrete points at the vertices or any point
inside the polygon itself. This paper will give a survey as to what is
known about each of these problems and what improvements could be
worked on. This paper also provides a 4-approximation to the vertex
terrain guarding problem.

1 Introduction

The terrain guarding problem and the art gallery problem are two areas in
computational geometry. The terrain guarding problem and the art gallery
problem are instances of the set cover problem that are induced on a geo-
metric setting.

1.1 Terrain Guarding Problem Introduction

An instance of the terrain guarding problem contains a terrain T that is an
x-monotone polygonal chain. An x-monotone chain in ℜ2 is a chain that
intersects a vertical line at most once. The terrain is defined by a set of
points P = {v1, v2, ..., vn}. A vertex vi is defined with coordinates (xi, yi).
The points are ordered such that xi < xi+1. There is an edge connecting
each (vi, vi+1) pair where i = 1, 2, ..., n − 1. We say a point p on the terrain
sees another point q on the terrain if the line segment pq lies entirely above
the terrain T .

We wish to find a set of vertices G ⊆ P such that each of the vertices in
P is seen by a point in G. We call this set G a guarding set. It is obvious to
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Figure 1: Terrain Guarding Example

see that P itself is a guarding set. The optimization problem is thus defined
as finding the smallest such G.

We restrict guards to be placed on the terrain and not above the terrain.
This is a reasonable restriction considering a guard placed sufficiently high
will guard the entire terrain.

An example is the best way to visualize how the terrain guarding problem
works. In Figure 1, there are 22 vertices that must be guarded, thus n=22.
The optimization problem thus asks what is the minimum number of guards
that must be placed in order to see the entire terrain. The decision version of
the problem asks whether k guards are sufficient to guard the entire terrain.
It is unknown whether these questions can be answered in polynomial time.

The terrain in Figure 1 consists of the points {x1, x2, ..., xn} and an edge
between xi and xi+1 where i = 1, 2, ..., n− 1. The guarding set G consists of
the following points: {x3, x8, x11, x15, x19, x21}. The terrain has 22 vertices
that also act as potential guards. The black squares are points that need to
be guarded, the circles are guards. The circles are also points that need to
be guarded. Consider the vertices on the terrain in order, x1 is the leftmost
point, x2 is the point to the right of it and so on until xn is the rightmost
point. In the figure it is clear to see that x1 is guarded by x3 since x1x3 lies
entirely above the terrain. x2 is also guarded by x3 for the same reason.

1.2 Art Gallery Problem Introduction

The art gallery problem has similar features to the terrain guarding problem.
The art gallery problem is defined by placing points inside a polygon such
that the entire polygon is guarded. An instance of the art gallery problem
P contains a set of points {v1, v2, ..., vn} where an edge connects (vi, vi+1)
when i = 1, 2, ..., n − 1. There is also an edge that connects vn to v1. We
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Figure 2: Art Gallery Example

assume that no two edges intersect. The exception to this is that consecutive
edges (vi−1, vi) and (vi, vi+1) intersect at one point, vi. This type of polygon
is considered simple. The curve is formed by connecting the edges (vi−1, vi)
to (vi, vi+1) at point vi for i = 2, 3, ..., n − 1. We also connect (vn−1, vn)
and (vn, v1) at point vn. These connections will separate the plane into two
connected regions, an interior and an exterior. A simple polygon is defined
as the interior and the curve itself, which forms the boundary.

The point guarding problem is defined as the following. Consider all
points on the curve and inside the curve and call that set Q. The goal in the
point guarding problem is to come up with a guardset G ⊆ Q. The property
that must hold is that ∀q ∈ Q, ∃g ∈ G such that g sees q. G is said to be
the minimum cover of P if |G| is the smallest among all guard covers of P .
The problem then becomes finding the minimum cover.

The vertex guarding problem is a little more restrictive than point guard-
ing. In this problem, we are restricting guards to be at vertices of the poly-
gon. We wish to find a G ⊆ P such that ∀q ∈ Q, ∃g ∈ G such that g sees
q. The problem then, similar to the point guarding problem, is finding the
smallest such guardset G.

A good way to visualize this is through an example in Figure 2.
Consider the polygon in Figure 2. The goal is to place guards so that the

entire polygon is seen. It is easy to see that points placed at the circles will
see the entire polygon. Therefore the polygon can be seen using 4 guards.
The decision question of whether any given polygon can be seen by k guards
is known to be NP-hard, even if the polygon is simple, as shown in [11]. The
problem is NP-hard whether we place guards anywhere or we restrict guards
to be placed only at the vertices. The vertex guarding problem is a restricted
version of the art gallery problem in that we are only allowed to place guards
on the vertices. An example of this is shown in Figure 3.
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Figure 3: Art Gallery Example Vertex Guarding

A convention used throughout this paper will be the notion of a d-
approximation. As an example take the polygon shown in Figure 3. The
optimal solution to the problem is 4. Let us say we have an algorithm that
provides a 3-approximation. This means our 3-approximation algorithm will
place no more than 12 (4x3) guards and solve the problem.

The remainder of the paper is set up as follows. Section 1.3 gives some
motivations to solving the art gallery and terrain guarding problems. Section
2 will deal with the terrain guarding problem and will provide a simple 4-
approximation to the vertex guarding problem. Section 4 will get into the
art gallery problem, show why it’s NP-complete, provide a reason why n

3

guards are necessary and sufficient for guarding an art gallery and describe
some other results. Section 5 will give a conclusion and a look into some
open problems in the areas.

1.3 Motivations

Art gallery problems are motivated by problems such as line of sight trans-
mission networks, signal communications, cell phone tower placement and
other network related problems. A terrain guarding problem is motivated
from guarding or covering a road with either security cameras or lights.
Some of the greedy algorithms for set cover type problems lead to very bad
results. The original set cover problem can have a bad solution if it chooses
greedily. Terrain guarding and art gallery problems are also not immune
to this problem. An terrain guarding example illustrating this problem is
given by King in [7].
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2 Terrain Guarding

The terrain guarding problem can be divided into two problems, a discrete
version and a continuous version. The discrete version focuses on guard-
ing only the vertices of the terrain (or some discrete set of chosen points).
Whereas the continuous version focuses on guarding the entire terrain. Find-
ing an optimal set of guards is not known to be NP-hard. A proof proposed
by Chen et al in [2] suggested an NP-hardness result was obtainable using a
modification of Lee and Lin’s proof in [8]. However, the details were omit-
ted and were never verified. Neither attempt at proving NP-completeness or
finding a polynomial time algorithm has been successful. The first constant
factor approximation came from Ben-Moshe in [9]. Clarkson and Varadara-
jan gave another constant factor approximation for the problem based on
solving a linear programming relaxation and rounding in [3]. No attempts
were made to minimize the constant in either paper. King notes in [7]
that the factor in [9] can be brought down to 6 with careful bookkeeping
and minor modifications. King’s paper in [7] provides a 5-approximation
to the terrain guarding problem and until now was the best known approx-
imation.1 Some constant factor approximations have been given but no
polynomial time approximation scheme is known such that, for any ǫ > 0,
we are guaranteed a (1 + ǫ)-approximation. This paper will provide a very
simple 4-approximation to the terrain guarding problem.

3 4-approximation Algorithm

The following is the best known approximation algorithm for guarding a
terrain. It is also worth noting that many other algorithms are much more
complex than our algorithm. Our algorithm produces a 4-approximation in
polynomial time.

3.1 Preliminaries

Let T be an x-monotone polygonal chain having n vertices. T is specified
by n vertices with an edge connecting (vi, vi+1) for i=1, 2, ..., n−1. A vertex
vi is made up of coordinates (xi,yi). For convenience, the leftmost point of
T will be referred to as s and the rightmost point of T will be referred to
as t. We are interested in guarding the n vertices as opposed to the entire

1The paper originally published claims a 4-approximation. However, an error in the
paper was discovered and the approximation guarantee has been weakened to 5. The
errata describes this in [7].
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terrain. Let p and q be two vertices on T . We say that p sees q if and only if
the line segment pq lies entirely above the terrain. We say p < q if xp < xq.
For a given point p ∈ T , L(p) will denote the leftmost point in T that sees
p. R(p) is defined similarly. A subterrain [u, v] is defined as the the part of
the terrain between u and v inclusive where u and v are points on the chain
T . A guard for point p ∈ T is a point on T , say g, that sees p. A guardset
G ⊆ T is defined as the following. For each vertex x ∈ T , there is at least
one vertex g ∈ G where g sees x. We use the order claim as defined below:

Lemma 1. Let a, b, c and d be 4 points on T and a < b < c < d. If a sees
c and b sees d, then a sees d.

Proof. It is easy to see that there is no point that lies above the line segment
ac since a sees c. It is also clear that no point lies above the segment bd
since b sees d. By the ordering of a, b, c, and d, it is clear to see that no
point can lie above the segment ad. Therefore a sees d.

3.2 Exact Algorithm For One Sided Guarding

This section we will provide an exact algorithm for choosing guards in the
following manner. Pick a point on T that must be guarded. Call that point
p. We must guard the point p with a guard to the left of p. In other words,
any guard g for p must have the feature that xg ≤ xp. The leftmost vertex
of T will always be a guard since L(v1) = v1. We use the following lemma
to show that it is possible to select the optimal set of guards in polynomial
time.

Lemma 2. Let T ′ be any nonempty set of vertices on the terrain. There
exists a vertex p ∈ T ′ such that p is not L(q) for any q ∈ T ′ and there is no
r ∈ T ′ where L(p) ≤ L(r) < r < p.

Proof. Assign p to be vn. It is true that p will not be the L(q) for any q ∈ T .
If there does not exist an r such that L(p) ≤ L(r) < r < p, then we are
done. If such an r exists, assign p to be the rightmost such r and continue
on. We can also see that the r will not be L(q) for any vertex q. Suppose
a q exists such that r is L(q) for some q. Since r = L(q) > L(p), we must
have that q < p. This contradicts the fact that r is the rightmost vertex
with L(p) ≤ L(r) < r < p. We will eventually reach the base case where
there is no vertex r where L(p) ≤ L(r) < r < p. When we reach this case
we are done.
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Algorithm

The algorithm takes as a parameter a set of points T ′ and returns an optimal
guarding set for the terrain.

leftSideTG(T ′)

1. If T ′ is empty, return ∅.

2. Find a p ∈ T ′ such that p is not L(q) for any q ∈ T ′ and there is no
r ∈ T ′ such that L(p) ≤ L(r) < r < p.

3. T ′′ ← T ′ \ all points to the right of L(p) that L(p) sees.

4. G← L(p).

5. Return leftSideTG(T ′′) ∪ G.

3.3 Proof of Algorithm

We prove by induction on the size of T ′ that leftSideTG(T ′) produces an
optimal set of guards for T ′. The base case is when T ′ is empty. We proceed
to the inductive step where T ′ contains some set of points that we need to
guard. Let OPT be an optimal guard set for T ′. Let us consider a point
p ∈ T ′ chosen by leftSideTG(T ′) in step 2. There is a guard g ∈ OPT that
sees p. We show that the point L(p) sees any point in T ′ that g sees. This
is clearly true if g = L(p). It must be the case that L(p) ≤ g ≤ p. Assume
g 6= L(p).

We observe that there is no r ∈ T ′ such that L(p) < r < p. By the order
claim, such an r must have L(p) ≤ L(r). This would give us L(p) ≤ L(r) <
r < p. This is not possible because of our choice of p.

We only have to show that a q ≥ p that is seen by g is also seen by L(p).
If g < p, it follows that L(p) will see such a point q by the order claim. We
are left with the case where g = p.

Suppose there is a point q > p that p sees that L(p) does not see. q must
then lie below the line segment L(p)p otherwise L(p) would see q. There are
no vertices in T ′ that lie to the left of L(p) that lie above the line segment
L(p)p by the definition of L(p). It must be the case the p = L(q). However,
this contradicts our choice of p in step 2.

We thus conclude that L(p) sees any point in T ′ that g sees. We now
have OPT \{g} as a guarding set for T ′′. T ′′ is all points in T ′ that L(p) does
not see. By the inductive hypothesis, leftSideTG(T ′′) is a guarding set for

7



T ′′ whose size is at most OPT \ {g} = OPT − 1. Therefore leftSideTG(T ′)
= {L(p)}∪ leftSideTG(T ′′) is a guarding set for T ′ whose size is at most
OPT .

An algorithm called rightSideTG(T,G) works similarly and is shown be-
low.

rightSideTG(T,G)

1. Find a p ∈ T such that p is not R(q) for any q ∈ T and there is no
r ∈ T such that p < r < R(r) ≤ R(p).

2. T ′ ← T\ all points to the left of R(p) that R(p) sees.

3. G← G ∪R(p).

4. If T ′ is empty, return G, else return rightSideTG(T ′, G)

3.4 Algorithm Example

Consider Figure 4 to help explain Lemma 2 and the algorithm leftSideTG.
We would not be allowed to pick a initially because a is L(b). However b
is able to be chosen as our p. We place a guard at a = L(b) and continue.
A next guess would be choosing point c to be our next p. However, this is
also not allowed since we have an r such that L(p) ≤ L(r) < r < p, namely
L(c) ≤ L(d) < d < c. Therefore we must chose d as our next p and place a
guard at L(d). These are the two cases in picture form.

Theorem 3. There exists a polynomial time algorithm that optimally guards
a terrain from the left (or right).

3.5 LP-approach

The following section will describe the 4-approximation algorithm for the
problem of finding the smallest subset of vertices that guard all terrain ver-
tices. The approach is based on solving the linear program (LP) relaxation of
terrain guarding. We then round a fractional solution to an integer solution.
The objective function of the LP:

min
∑n

i=1
wi.

The variable wi’s range over the non-negative real numbers. The con-
straints of the LP are:

8



...

a

b

c

L(a)
L(c)

L(b)

d

L(d)

Figure 4: Sample terrain

∀y ∈ P,
∑

i:i sees y wi ≥ 1.

Each guard i may be thought of as a fractional guard whose fraction is
wi. The constraint for y says that each vertex y sees a bunch of fractional
vertices on the terrain; the sum of those fractional vertices must be equal to
or greater than 1.

Let (w1, w2, ..., wn) be the optimal solution of the LP. It is clear that
∑n

i=1
wi ≤ OPT where OPT is the optimal terrain guard cover. We now

place each vertex that must be guarded into two sets, L and R. A vertex
will be placed in the set L if the following is true:

∑

i:i≤y and i sees y wi ≥
1

2
.

If the vertex is not placed in the set L, it is placed in the set R. We
now have two sets of vertices that must be guarded. Let us set li = 2wi for
each vertex i. Note that for each q ∈ L, we have

∑

i:i≤q and i sees q li ≥ 1. We
call the procedure leftGuard(L, l) which produces a set of at most

∑n
i=1

li
guards that see each vertex L from its left. We call a similar procedure
rightGuard(R, l) that produces a set of at most

∑n
i=1

li guards that see each
vertex R from the right. We return the union of these two sets of guards.
There size is at most 2

∑n
i=1 li ≤ 4

∑n
i=1 wi ≤ 4OPT , thus we have a 4-

approximation.
We now describe the procedure leftGuard(L′, l′). It takes as input a set

of guards L′ and a non-negative vector l′ = (l′1, l
′
2, ..., l

′
n) such that for any

9



q ∈ L′ we have
∑

i:i≤q and i sees q l′i ≥ 1. As we will show, the procedure re-
turns a set of at most

∑n
i=1

l′i guards that sees each vertex in L′ from its left.

leftGuard(L′, l′)

1. If L′ = ∅, return ∅.

2. Find a p ∈ L′ such that p is not L(q) for any q ∈ L′ and there is no
r ∈ L′ such that L(p) ≤ L(r) < r < p.

3. L′′ ← L′ \ all points to the right of L(p) that L(p) sees.

4. l′′i ← 0 for each vertex i in the range [L(p), p]. Let l′′i ← l′i for every
other vertex.

5. Return L(p) ∪ leftGuard(L′′, l′′).

Lemma 4. Assuming that
∑

i:i≤q and i sees q l′i ≥ 1 for each q ∈ L′, leftGuard(L′, l′)
returns a set of at most

∑n
i=1

l′i guards that see each point in L′ from its left.

Proof. We do this by induction on |L′|. The base case is when |L′| = 0.
Consider the inductive step. Any guard that sees the p chosen in step 2
must lie in the range [L(p), p]. Thus, the sum of the l′ values of vertices
in this range is at least 1. Therefore,

∑n
i=1

l′′ ≤
∑n

i=1
l′i − 1. From our

argument of the leftSideTG algorithm, we can assert that any q ∈ L′ that is
seen from its left by some g ∈ [L(p), p] is also seen by L(p). It follows that
any q ∈ L′′ is not seen from its left by any g ∈ [L(p), p]. So l′′i = l′i for any i
that sees q ∈ L′′ from its left. Thus we have

∑

i:i≤q and i sees q l′′i ≥ 1 for any
q ∈ L′′.

Using the inductive hypothesis, we conclude that leftGuard(L′′, l′′) com-
putes a set of at most

∑

i l
′′
i guards that see each point in L′′ from its left.

So leftGuard(L′, l′) computes a set of at most 1 +
∑

i l
′′
i ≤

∑

i l′i guards that
see each point in L′ from its left.

The procedure rightGuard(R′, r′) works analogously. We conclude with
the main result of this section.

Theorem 5. There exists a polynomial time algorithm that provides a 4-
approximation to the vertex terrain guarding problem.
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4 Art Gallery Problem

The art gallery problem as described in the introduction can come with
different restrictions. The two that will be looked at in this paper are the
point guarding problem and the vertex guarding problem. This section
will contain an NP-completeness proof for the art gallery problem and an
explanation on why n

3
guards are sufficient and sometimes necessary to guard

a polygon.

4.1 NP-Completeness Proof

The general art gallery problem was shown to be NP-complete by Lee and
Lin in [8]. They show that the problem is NP-hard for both the vertex guard
problem and the point guard problem. The proof is a nice reduction from
the 3SAT problem.

4.1.1 Preliminaries

The following terminology will be used for the NP-completeness proof of
the art gallery problem. A simple polygon is defined as a set of points
P = v0, v1, ..., vn where vi = (xi, yi). A straight line connects the points
(vi, vi+1) and where v0 = vn. There is also the constraint that no two edges
intersect, except at the endpoints of consecutive edges; thus the polygon is
simple. Two points p and q are said to be visible from each other, or p
sees q, if the line segment pq lies completely inside the curve formed by the
points in P (it is ok if the line segment touches the edges of P or points in
P ).

4.1.2 Reduction from 3SAT

The following section will show a reduction from 3SAT to the vertex guard-
ing problem in polynomial time. The 3SAT problem consists of a set
of n Boolean variables, say U = {u1, u2, ..., un} and a set of m clauses
C = {c1, c2, ..., cm} where each clause c ∈ C is composed of literals formed
by three Boolean variables. For example, c1 could be defined as (u2∨u6∨u9).

The question we want to know is if there is a satisfying truth assignment
for C. More formally, does a truth assignment for the Boolean variables in
U exist such that c1 ∧ c2 ∧ ... ∧ cm is true?

The transformation from 3SAT to the vertex guard problem consists
of creating a couple of gadgets and finding a way to connect them so the
final product is a simple polygon. The polygon will then have the feature
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a

b

Figure 5: Literal Pattern

that if the minimum cover of the polygon is of size K, then there is a truth
assignment that satisfies the 3SAT instance. The converse is true such that
if there is a truth assignment that satisfies the 3SAT instance, the polygon
is coverable with K guards. In the following sections, K = 3m+n+1 where
m is the number of clauses and n is the number of Boolean variables. The
first gadget that is created is called a literal pattern. Literal patterns are
connected to a clause junction. We then create a gadget called a variable
pattern and then put all of them together to create our polygon.

A literal pattern example is shown in Figure 5. It is clear to see from
the figure that only vertex a or vertex b can cover the entire pattern.

The next gadget is called a clause junction. Consider any clause ci ∈
C and assume the variables of ci are ui, uj and uk. The pattern for the
clause is shown in Figure 6. The figure has a1, a2, a3 and a4 instead of
ui1, ui2, etc. Similarly for b and c. It can be seen that none of the guards
gi can cover the entire literal pattern for ui, uj , or uk. It is also true that
no two vertices of the literal pattern gadget are sufficient to cover the entire
clause junction. In the figure, the following sets of points are collinear:
(g2, g8, a4, a1, b4, b1, d4, d1, g9, g1), (g3, g4, g7, g1), (g8, g4, g5), and (g9, g7, g6).
It is also the case that the length of | g2, g8 | = | g8, a4 |. We obtain the
following two lemmas.

Lemma 6. At least three vertices are required to cover the entire clause
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g4g3

g2 g8

a4

a2

a1

b4

b2

b1

c4 c1

c2

g9

g1
g7

g6

a3
b3

c3

Figure 6: Cause Junction

junction.

Lemma 7. Only seven three vertex covers exist that can cover the entire
clause junction.

Proof. Consider the vertices that are part of the literal pattern ui, or in our
picture, ai for i = 1, 2, 3, 4. Choosing a guard at a4 or a2 does not cover the
entire literal pattern. Therefore we should only select guards at a1 or a3.
We also should not place a guard at both spots otherwise we will need two
more guards to see the uj and uk (in the picture, b and c) literal pattern
giving us four guards. We need to pick a guard in the set {a1, a3} to see
the entire literal pattern for a. We must do the same for b and c. Thus
it is obvious that Lemma 6 is true. We end up with the following guard
choices if we want a three vertex cover, {a1, b1, c1}, {a1, b1, c3}, {a1, b3, c1},
{a1, b3, c3}, {a3, b1, c1}, {a3, b3, c1} and {a3, b1, c3}. If we place guards at
{a3, b3, c3}, we will not see part of the clause junction, for example g2.

This leads to a fairly obvious choice of how to label these vertices. If
a given clause contains the variable ui (a in the figure), we place a guard
at a1 to correspond to true and a3 to correspond to false. If a given clause
contains the variable ui, we place a guard at a3 to correspond to true and
a1 to correspond to false. It is easy to see that three guards placed at
{a3, b3, c3} will result in the clause being evaluated to false. It is also easy
to verify that a clause that has a truth assignment of true will guard the
entire clause polygon.

The final gadget that must be explained is the variable pattern gadget.
The variable pattern is used as a consistency check for each variable. In
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ti1ti2
ti3

ti4

ti5 ti6

ti7

ti8

Figure 7: Variable Gadget

other words, a Boolean variable ui should not be chosen to be true in one
clause junction and false in another. The variable pattern for ui is shown in
Figure 7. Note that a point inside the triangle consisting of ti1, ti2 and ti3
can only be guarded from the following points: ti1, ti2, ti3, ti5, ti6 or ti8.

The important parts of the variable pattern are the distinguished point
that only a certain set of vertices can see and the two rectangle-like objects
that protrude downwards. Now that all of the gadgets have been accounted
for, three steps are needed to put them all together to create our polygon.

4.1.3 Putting variable patterns and clause junctions together

The variable patterns and clause junctions are put together as shown in the
Figure 8. It should be noted that the following sets of lines are collinear
(t11, gh5, gh4, gh8) as well as (tn8, gh6, gh7, gh9) for h = 1, 2, ...,m. The rea-
son we have extra numbers/letters, ie tn8 as opposed to t8, is to show the
difference between each variable and clause. tn8 refers to the t8 vertex for
variable un however t18 refers to the vertex t8 for variable u1.

4.1.4 Adding spikes to variable patterns

Adding spikes to our variable pattern is a way to check consistency with the
variables. Figure 9 shows the spike for a assuming a is in a clause cj . It
should be noted that the following sets of points are collinear (p, q, ti5, a3)
and (p1, q1, ti8, a1) for t = 1, 2, ..., n. A way to think about the pattern is to
say that ti5 represents false and ti8 represents true for a particular variable
a. If a is in the clause cj , then different sets of points would be collinear,
namely (p, q, ti5, a1) and (p1, q1, ti8, a3). This gadget is not complete though.
A spike is not allowed so it must be expanded to form a polygonal region.
This is done in the next step.
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Figure 8: Putting the literal and variable patterns together, see Figure 7
and Figure 6 for naming of vertices for each vertex in each pattern

ti1ti2
ti3

ti4

ti6

ti7

ti8

a3

a1

ti5
p

q
q1
p1

Figure 9: Augmenting spikes when a ∈ cj
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ti1ti2
ti3

ti4

ti6

ti7

ti8

a3

a1

ti5

e

f
p

q

Figure 10: Each spike replaced with a region

4.1.5 Replacing spikes by polygonal regions

Let us take a to be a variable in clause junction ch. Each spike is replaced by
a polygonal region as shown in Figure 10. The region is defined as a triangle
with corners at a3, q and f ; similarly defined for a1. It should also be noted
that (a3, ti5, p, q) are collinear and the same is true for a1, e, f . These regions
are used for consistency checks to ensure that we always choose a variable’s
truth assignment consistently. For example, we can not choose a to be true
in a clause ci and choose a to be false in a clause ck. The next section will
explain why this is not possible.

4.1.6 Putting the pieces together

The last section regarding the NP-completeness of the art gallery problem
revolves around putting all of the pieces together and showing that the art
gallery can be covered with K guards if and only if there is a solution to
the 3SAT instance. We must have at least 3m + n + 1 vertices to cover the
polygon. We have m clause junctions made up of three literal patterns each.
Each literal pattern has a distinguished point that can only be covered by
one of two points. From Lemma 6 above, at least three guards are required
per clause junction. This gives us at least 3m points being needed to cover all
clause junctions. The variable patterns in Figure 7 also have a distinguished
point that can only be guarded by a certain set of vertices. Each of these
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vertices can only guard one distinguished point. There are n of these variable
patterns because we have n variables; thus we need n more points. We need
to add one more point at W from Figure 8 so we can see all of the rectangle
areas of the variable patterns that the previous guards do not see.

The number of guards needed to cover this simply connected polygon
region is K = 3m + n + 1 if and only if the 3SAT instance C is satisfiable.
The first direction is rather easy to see. It says that if a 3SAT instance C
is satisfiable, then the polygon can be covered with K = 3m + n + 1 guards.
If C is satisfiable, there is a truth assignment to the variables in C that
satisfy C. Pick any variable ui and choose guards based on whether it is
true or false. If ui is true, then ti8 of the variable pattern for ui is chosen,
ti5 otherwise. Choosing this will cover all of the polygon regions that we
created in the replacing spikes by polygon regions. If ui is in a particular
clause, we place a guard at ah1. If ui is in the clause, we place a guard
at a3. From our construction of the spikes, we are able to cover all of the
polygonal regions created using 3m + n guards. What remains is covering
the rectangle regions of the variable patterns. We place a guard at W and
the entire polygon is guarded. We thus end up with a minimum cover of
K = 3m + n + 1 guards.

We must now show that if a cover for our polygon exists of size K =
3m+n+1, then a 3SAT instance C is satisfiable. If we have a cover of that
size, we know that W exists so we only concern ourself with the remaining
3m + n vertices. In each clause, we have three literal patterns. We also
have n variable patterns. This gives us 3m + n distinguished points. We
know that any vertex that covers a distinguished point can not cover other
distinguished points. Therefore each distinguished point can only be covered
by one vertex.

However, we can not simply place guards randomly to cover each of these
distinguished points. We must be certain that the consistency property is
held. All of the consistency patterns in one of the two rectangles (see Figure
10) are covered by the 3m vertices from the literal patterns. Let us assume
that ui is assigned false in one clause and true in another. This will leave
a certain spike unguarded in one of the rectangles. For the guarding to be
consistent, all of the spikes in rectangle must be covered by one of the 3m
guards. All of the spikes in the other rectangle must be guarded by either ti5
or ti8. This keeps our choices consistent. If we have guards that are correct,
we look at the n variable patterns. If ti5 is a guard, the variable ui is true.
Otherwise ui is false.
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Figure 11: Chvatal’s Art Gallery Theorem Example

4.2 Recent Art Gallery Results

The art gallery problem, along with being NP-complete, has also been shown
to be APX-hard in [4]. This means that there exists a constant ǫ > 0 such
that no polynomial time algorithm can guarantee an approximation ratio
of 1 + ǫ unless P = NP . Ghosh provides a O(logn)-approximation for
the minimum vertex guard cover where guards can only be placed at the
vertices of the art gallery in [6]. The point guarding problem seems to be
much harder than the vertex guarding problem and precious little is known
about it. Art gallery problems where the polygon is x-monotone have been
shown to have a 12-approximation by Nilsson in [10]. Based on his result
Nilsson also provides a O

(

OPT 2
)

approximation for rectilinear polygons.

4.3 Chvatal’s Art Gallery Theorem

The question of how many guards are needed or necessary to guard an entire
polygon was proposed by Victor Klee in 1973. Vasek Chvatal soon after
established a solution to what we know as Chvatals Art Gallery Theorem.
An obvious answer would be n guards. Simply place a guard at every corner
and we will certainly see the entire polygon. However, Chvatal showed that
n/3 is an upper bound on the number of guards needed to guard a simple
polygon and this bound is sometimes necessary. To see why n/3 is sometimes
necessary, consider the polygon in Figure 11.

The polygon requires four guards with n=12. It is also an upper bound
on the number of guards. Chvatal first noted this in [1]. However, Fisk’s
proof in [5] is much simpler and easier to understand. The first step in
Fisk’s proof was to triangulate a polygon by adding internal diagonals. The
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Figure 12: n/3 bound

triangulation theorem in [11] states that a polygon of n vertices may be
partitioned into n− 2 triangles by the addition of n− 3 internal diagonals.
We take any polygon and triangulate it so it contains n − 2 triangles. An
example of this is shown in the Figure 12.

It is easy to see that the vertices of a polygon that have been broken up
into triangles can easily be 3-colored. A k-coloring of a graph is simply an
assignment of colors to vertices such that no adjacent vertices have the same
color. Consider Figure 12. We can pick any arbitrary triangle and 3-color it
however we want. By doing so, we then force the remaining vertices to be
picked in a certain way. For example we pick the triangle (a, c, g). We color
it 1, 2 and 3 accordingly. This then forces e to be 1, d to be 3, f to be 2 and
so on. Since our polygon has no holes and is simple, we are able to 3-color
the polygon. The last step is to notice that at least one of the colors is not
used more than 1

3
of the time. Let a, b and c be the number of occurrences of

the different colors. We can say that a ≤ b ≤ c. The total number of nodes
is n so a+ b+ c = n. Therefore a ≤ n

3
. Let us say color 1 was the least used

color. The last step is to then place guards at each vertex colored 1. Every
triangle has three nodes and therefore every triangle contains three colors,
1, 2 and 3. Each vertex is thus guarded by some guard. It follows that for
any polygon, n

3
vertices is sufficient to cover it.
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5 Conclusion and Future Work

There are many open problems in the art gallery and terrain guarding area
that are worth considering. The most obvious one I would like to consider
is whether the vertex guarding version of terrain guarding is NP-complete.
Many attempts have been made to show NP-completeness but many of the
reductions get hung up by the order claim. However, attempts to show a
polynomial time algorithm have been hard as well. If terrain guarding is
shown to be NP-hard, it would be interesting to study if the problem is
APX-hard or if there is a PTAS available. If the problem is APX-hard,
it would be nice to lower the constant factor approximation as much as
possible.

On the art gallery side a little more is known. The general art gallery
problem is NP-complete. However, no NP-completeness proof has been
provided for the guarding of monotone polygons. It would be interesting
to see if the guarding of monotone polygons is indeed NP-complete and
then possibly APX-hard. If so, how low can the approximating constant
get? If not, is there a 1+ ǫ approximation? It would be interesting to study
the possibility of constant factor approximations for both the point guarding
problem and vertex guarding problem and seeing how low the constant factor
could get.
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