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ABSTRACT

Placing security cameras in buildings, finding good locations for cameras to

enforce speed limits or placing guards to defend a border are some of the problems we

face everyday. A nation that wishes to defend its border with armed guards wants to

be sure the entire border is secure. However, hiring more guards than necessary can

be costly. A start-up company moving into a new building wants to be sure every

room in the building is seen by some security camera. Cameras are expensive and

the company wants to install the smallest number of cameras; at the same time the

company wants to be sure the building is secure.

These problems, and many other visibility type problems, are not easy to

solve in general. In some specific cases, optimal solutions can be obtained quickly. In

general, finding an optimal solution may take a very long time.

The original results of this thesis address some of these problems. We show

some positive results for solving some of these visibility problems. We also give some

negative results for some of these problems. These negative results are useful because

they tell us that we are unlikely to find a fast algorithm to solve a particular problem

optimally.
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CHAPTER 1

INTRODUCTION

The terrain guarding problem and the art gallery problem are two problems

in computational geometry. Both problems are geometric set covering problems. A

brief introduction to the set cover problem will be given in Section 1.1. The geometric

set cover problem will be introduced in Section 1.2. An introduction to the terrain

guarding problem will be covered in Section 1.3. The art gallery problem will be

introduced in Section 1.4.

1.1 Set Cover

In the set cover problem, we are given as input a collection of subsets S of

another set U . We are also given a set M ⊂ U that we wish to cover. We say that

a collection of subsets S covers M if for every element m ∈ M , there exists a subset

S ′ ∈ S such that m ∈ S ′. We will assume that S covers M .

The decision version of the set cover problem also takes an integer k as input

and asks if there are k such subsets from S that cover M . In other words, does there

exist a collection of subsets S ⊆ S such that S covers M and |S| ≤ k?

Consider the following example:

• U = {1, 2, 3, 4}

• M = {2, 4}

• S1 = {1, 4}
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• S2 = {2, 3}

• S3 = {3, 4}

• S4 = {2}

• S5 = {1, 3}

• S = {S1, S2, S3, S4, S5}

• k = 1

In this example, we ask if M can be covered with 1 set chosen from the set S.

In this example, there does not exist an S ∈ S such that S covers M . Therefore the

output would be NO. However, if k is changed to 2, the output would be Y ES. A

possible solution with 2 sets chosen from S is {S1, S2}. In the minimization version

of the set cover problem, the input is the same except we are not given the integer k.

The goal of the minimization version is to find the smallest value of k such that the

answer to the corresponding decision version is Y ES.

For an instance of the set cover problem, let n be the size of the input. We say

that n is the number of elements in M plus the number of subsets in S. A polynomial

time algorithm is an algorithm whose running time is upper bounded by a polynomial

in n.

The set cover problem is NP -hard. A problem that is NP -hard is unlikely to

have a polynomial time algorithm that solves every instance of the problem optimally

unless P = NP . A polynomial time approximation scheme (PTAS) is an algorithm
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Figure 1.1: Example where a greedy algorithm performs poorly.

that takes an instance of a problem and a parameter ǫ > 0 and in polynomial time

produces a solution within an ǫ factor of the optimal solution. Some problems that

are NP -hard have been shown to be APX-hard. An APX-hard problem is a problem

that does not admit a PTAS unless P = NP .

An approximation algorithm is an algorithm that will guarantee the solution

obtained is within a certain range. For example, saying an algorithm for a given

problem A is a 5-approximation means that for every instance of problem A, the

algorithm will output a solution that is within a factor of 5 of OPT . Here, OPT is

the optimal value for a given problem instance. A PTAS is a (1 + ǫ)-approximation

where ǫ > 0 is given with the input.

The set cover problem has been shown to be NP-hard [27]. The problem has

been shown to be hard to approximate [37] within a c∗ln(n) [40, 3] by any polynomial

time algorithm where c is some constant unless P = NP . For the set cover problem,

a simple greedy algorithm performs very close to the best possible polynomial time

algorithm. A greedy algorithm may return a solution that is within a log(n) factor of

the optimal solution. To see how a greedy algorithm can fail to produce an optimal
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solution, consider the following problem:

• U = {1, 2, 3, ..., 13, 14}

• M = U

• S1 = {1, 2, 3, 4, 5, 6, 7}

• S2 = {8, 9, 10, 11, 12, 13, 14}

• S3 = {4, 5, 6, 7, 11, 12, 13, 14}

• S4 = {2, 3, 9, 10}

• S5 = {1, 8}

• S = {S1, S2, S3, S4, S5}

• k = 1

Each element in M is initially uncovered. The greedy algorithm chooses the

set S ∈ S that contains the largest number of uncovered elements. The optimal

solution is to choose S1 and S2. In the example, the greedy algorithm chooses S3 to

be in the solution first. This leaves {1, 2, 3, 8, 9, 10} uncovered. The algorithm then

chooses S4 leaving {1, 8} uncovered. The algorithm finally chooses S5. An instance

of this problem is easy to see in figure form. In Figure 1.1, the optimal solution is to

take the 2 long “skinny” horizontal sets but each time the “fatter” sets to the right

are chosen. The optimal solution is 2 but here the greedy algorithm chooses 3 sets.
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For this example in general, the number of elements in the fat rectangles

from left to right is 2, 4, 8, 16, ..., 2n′/2 where n′ is the number of remaining uncovered

elements. Initially n′ = n. The key thing to note is that rightmost fat rectangle will

always be of size 2n′/2. The size of the 2 skinny rectangles will always be 2n′/2 − 1.

Therefore the greedy algorithm will always choose the rightmost fat rectangle and

give a solution with Ω(log(n)) rectangles when 2 is the size of the optimal solution.

1.2 Geometric Set Cover

The geometric set cover problem is the set cover problem in some geometric

setting. In general, the geometric set cover problem contains as input an integer d,

a value k, a collection S of subsets of ℜd; it is implicit that U = ℜd. The decision

version of the geometric set cover problem is to answer Y ES or NO to the question of

whether k subsets chosen from S cover M where M ⊂ U . The minimization problem

is to find the smallest such k such that the answer to the decision problem is Y ES.

Even in the geometric setting, many versions of the problem are believed to be

NP-hard [33, 31, 32]. The focus of current work is to find a polynomial time algorithm

that guarantees a “good” approximation. For many such geometric set cover problem,

one can obtain a polynomial time algorithm that guarantees a O(log(n)) approxima-

tion by reducing the problem to the combinatorial set cover problem [10, 26, 36].

Consider the following example: Let M be a collection of points in the plane,

ℜ2. We let S be a collection of rectangles in the plane and k be some integer. The

problem is to decide if it is possible to cover M with k rectangles chosen from set
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Figure 1.2: A geometric set cover example.

S. We say a rectangle S ′ ⊂ S covers an element m ∈ M if m is inside S ′. An

example is shown in Figure 1.2. The optimal solution is shown in Figure 1.3 by using

8 rectangles.

Some geometric set cover problems, like the combinatorial set cover problem,

can perform badly using a greedy algorithm. An example was already shown in Figure

1.1.

The goal of many algorithms for geometric set cover problems is to exploit

the geometry and structure of the problem to obtain a solution better than a simple

greedy algorithm. Exploiting the structure of these problems can produce constant

factor approximations [32], a PTAS [23] or even an algorithm that optimally solves
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Figure 1.3: A solution to Figure 1.2.

the problem in polynomial time [8]. The following sections describe two problems

that will be explored in detail in this thesis: the terrain guarding problem and the

art gallery problem.

1.3 Terrain Guarding

An instance of the terrain guarding problem contains a terrain T that is an

x-monotone polygonal chain. An x-monotone polygonal chain has the property that

any vertical line intersects the chain at most once. The terrain guarding problem gets

as input a set of points P = {v1, v2, ..., vn}. A point vi is defined with coordinates

(xi, yi). The points are ordered from left to right such that xi < xi+1. An edge ei is

defined as a straight line connecting vi to vi+1. The edge set E = {ei|1 ≤ i ≤ n− 1}.
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Figure 1.4: Example terrain guarding instance.

The terrain T consists of the points in P and the points in all of the edges in E. For

any two points p, q ∈ T , we say that p sees q if the line segment pq lies entirely above

or on T . We restrict guards to be placed on the terrain and not above the terrain.

This is a reasonable restriction considering a guard placed sufficiently high will guard

the entire terrain.

1.3.1 Discrete Terrain Guarding

In the discrete terrain guarding problem, along with the set P , we are given

a finite set G of candidate guards and a set X of points that need to be seen where

X, G ⊆ T . The decision version of the problem also gives an integer k as input. The

output to the decision problem is either Y ES or NO. The output is Y ES if there

exists a G′ ⊆ G with |G′| ≤ k so that every point in X is seen by at least one guard

in G′. We call this set G′ our guarding set. The minimization version of the problem

tries to find the smallest such k where the answer to the decision problem is Y ES.

As an example, consider the terrain in Figure 1.4. In this terrain, the black

dots are the set X and also the set G. The minimization problem wants to find the

smallest such G′ ⊆ G such that every point in X is seen by at least one guard in G′.
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Figure 1.5: Example discrete terrain guarding solution for Figure 1.4.

As shown in Figure 1.5, the minimum number of guards required is 3. It is important

to note that in the discrete version of the terrain guarding problem, not all of T needs

to be guarded; only the points in X need to be guarded.

1.3.2 Continuous Terrain Guarding

In the continuous terrain guarding problem, all points on the terrain T are

eligible guard locations. However, in this problem, all points in T must be guarded.

More formally, X = G = T . The minimization problem wants to find the smallest

such G′ ⊆ T such that every point in X is seen by at least one guard in G′. Consider

the example from Figure 1.6. In this Figure, all points on the terrain are potential

guards. The smallest number of guards required to see the entire terrain is 4 and this

solution is shown in Figure 1.7.

There are several things worth nothing about solutions to the continuous prob-

lem, G = X = T , and a common version of the discrete problem where G = X = P .

A solution Z to the discrete version is not necessarily a solution to the continuous

version. In Figure 1.5, all vertices of the terrain are seen but a small portion of the

terrain is unseen. This is emphasized in Figure 1.8. An optimal solution Y to the
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Figure 1.6: Example continuous terrain guarding instance. All points on the terrain are
candidate guards.

Figure 1.7: Continuous terrain guarding solution to Figure 1.6.

continuous version where all guards in Y belong to P is clearly a solution to the

discrete version. However, Y may not be an optimal discrete solution. This is seen

clearly in Figures 1.5 and 1.7.

Consider an instance with Z being an optimal discrete solution and Y being

an optimal continuous solution. Considering the previous example, it may the case

that Z ≤ Y or that all optimal solutions for the continuous problem contain guards

only at vertices in P . However, it is possible that Z > Y . It is also possible that

the optimal solution for the continuous problem contains guards that are not in P .

These claims can be seen in Figure 1.9. In can be easily verified that no 1 vertex sees

every other vertex. This example shows that |Y | = 1 where |Z| = 2.
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Figure 1.8: A solution to the discrete problem is not necessarily a solution to the continuous
problem. The boxed in portion of the terrain is not seen by any guard.

Figure 1.9: Terrain showing the optimal continuous solution contains less guards than the
optimal discrete solution. Dotted lines show visibilities.
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1.3.3 Motivations

Motivation for guarding terrains come from scenarios that include covering a

road with street lights or cameras. The goal for these applications is to find locations

to place lights to maximize light coverage. Another goal could be to find good loca-

tions for cameras to help enforce speed limits. Other applications include finding a

configuration for line-of-sight transmission networks for radio broadcasting, cellular

telephony and other communication technologies [4].

1.3.4 Previous Results

The terrain guarding problem has received considerable attention in the last

few years from the point of view of approximation algorithms. The first constant

factor approximation that ran in polynomial time for the terrain guarding problem

was shown by Ben-Moshe et al. in [4]. The algorithm presented in [4] initially

divides the terrains into independent pieces called subterrains. A property of these

subterrains is that every point in the subterrain is seen by some guard outside the

subterrain. For each subterrain that is not completely guarded by guards outside

of the subterrain, then that subterrain is either reduced to a smaller subterrain or is

split up into several subterrains. The algorithm is a fairly sophisticated combinatorial

approach. No analysis was made to show a small constant factor but it was proposed

to be as low as 6 in [28].

Clarkson and Varadarajan give a constant factor approximation in [11] based

on solving a linear programming relaxation. They partition the terrain into maximal
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intervals such that for two points p and q in an interval, the leftmost point that sees

p and the leftmost point that see q are the same. Ordering the intervals from left

to right, they note that we end up with a (r, 2) Davenport-Schinzel sequence [41].

Such a sequence has a length at most 2r. They use this to find appropriately sized

nets. They are able to apply a method of [6] to round the linear program using these

nets and obtain a constant factor approximation. No analysis was made to show how

small the constant factor could be.

A 4-approximation was proposed by King in [29] but further analysis increased

the approximation factor to 5 [28]. The algorithm worked by finding an unguarded

point u and a set of points S that would dominate any optimal guard g(u) for u. In

other words, every point that was seen by g(u) is also seen by some guard in S. As

further analysis showed, |S| was increased to 5 instead of 4.

In [18], Elbassioni et al. give a 4-approximation for the terrain guarding prob-

lem in the weighted case. In previous approximations, the unweighted case was con-

sidered. They decompose the constraint matrix of the linear program into totally

balanced matrices.

One of the interesting things about this problem is that despite the numerous

approximations that appeared for the problem, it was not known whether the problem

was NP-hard. Chen et al. [8] claimed that terrain guarding is NP-hard, but the proof

was never completed formally [29].
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1.4 Art Galleries

The history of the art gallery problem can be traced back to a question that

Victor Klee posed during a conference at Stanford in 1976:

How many guards are always sufficient to guard a polygon with n vertices?

Before we get to the answer, we first define what the art gallery problem is.

The input to the art gallery problem is a set of vertices V = {v1, v2, ..., vn}. A single

point vi is defined with x and y coordinates, (xi, yi). The polygon P is defined by

the vertices in V along with a set E of edges. An edge is given by specifying two of

the vertices and is interpreted as the line segment connecting the two vertices. If the

polygon is simple, the edges are (vi, vi+1), 1 ≤ i ≤ n− 1 along with (vn, v1).

The art gallery problem can come in many different flavors. Two common

versions are the point (interior) guarding version and the vertex guarding version.

Along with these versions, we can impose restrictions on what type of polygon is

accepted as input. Polygons could be monotone, rectilinear or have holes [24], see

Figure 1.10. Polygons with holes have an added set of vertices given as input to define

where the holes are located.

The edges shown in Figure 1.10 give us two disjoint regions: inside the polygon

and outside the polygon. The boundary for P is the points in V and the points in

all of the edges of E. The interior of the polygon defines the rest of the polygon P .

For any two points p, q ∈ P , we say that p sees q if the line segment pq does not go

outside the polygon P .
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monotone rectilinear

polygon with holes

Figure 1.10: Example with different polygon types.

The vertex guarding version of the problem forces guards to be placed at points

in V . The decision version of the problem accepts as input a polygon P , a positive

integer k and asks if there exists a guardset G ⊆ V such that |G| ≤ k and every point

p ∈ P is seen by at least one guard in G. If such a guardset G exists, the output

is Y ES. If no guardset exists, the output is NO. The minimization version of the

problem tries to find the smallest such k for which the answer to the decision problem

is Y ES.

As an example, consider Figure 1.11. To vertex guard this polygon we need

to place at least 4 vertex guards. Guards are shown as black dots on the vertex they

represent. It can be easily verified that no set of 3 vertex guards can guard this
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Figure 1.11: An example monotone polygon.

polygon.

The point guarding version of the problem has little restriction on guard place-

ment. A guard may be placed anywhere on the boundary of P or on the interior of

P . A guard may not be placed outside of P . The decision version of this problem

accepts as input a vertex set V , a positive integer k and asks if there exists a guardset

G ⊆ P such that |G| ≤ k and every point p ∈ P is seen by at least one guard in G.

If such a guardset G exists, the output is Y ES. If no guardset exists, the output is

NO. The minimization version of the problem tries to find the smallest such k for

which the answer to the decision problem is Y ES.

As an example, consider Figure 1.12. To point guard this polygon we need to

place at least 3 guards. Guards are shown as black dots. It can be easily verified that

no set of 2 guards can guard this polygon.

Consider a vertex guarding solution X and a point guarding solution Y for

some polygon P . We can say that |X| ≥ |Y |. In this situation, a vertex guarding

solution is a point guarding solution. At worst, our Y solution will choose guards
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Figure 1.12: An example point guarded polygon.

consistent with X and therefore can only find better solutions.

1.4.1 Motivations

Art gallery problems are motivated by applications such as line-of-sight trans-

mission networks in polyhedral terrains, e.g., signal communications and broadcast-

ing, cellular telephony, and other telecommunication technologies as well as placement

of motion detectors and security cameras.

1.4.2 Art Gallery Results

The question of whether guarding simple polygons is NP-hard was settled by

Aggarwal [2] and Lee and Lin [33] independently. They showed that the problem

is NP -hard for both vertex guards and interior guards. Further results have shown

that guarding a restricted subclass of polygons is still NP -hard [5, 39]. Along with

being NP -complete, the art gallery problem was shown to be APX-hard in [16]. This

means that there exists a constant ǫ > 0 such that no polynomial time algorithm can

guarantee an approximation ratio of (1 + ǫ) unless P = NP .
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Figure 1.13:
n

3
guards are necessary to guard this polygon.

The approximation complexity of guarding polygons has been studied by Ei-

denbenz and others. Eidenbenz [15] shows that polygons with holes cannot be effi-

ciently guarded by fewer than Ω(log n) times the optimal number of interior or vertex

guards, unless P = NP , where n is the number of vertices of the polygon. Brodén et

al. and Eidenbenz [5, 16] independently prove that interior guarding simple polygons

is APX-hard.

Tight bounds for the number of guards necessary and sufficient were found

by Chvátal [9] and Fisk [20]. It is sometimes necessary to place
n

3
guards to guard

the entire polygon. To see an example of this, see Figure 1.13. In this example, the

polygon is shaped like a comb with many spikes. Each spike requires a unique guard;

in other words no one guard can see 2 of these spikes completely. It is easy to see

that each of these spikes are loosely defined by 3 vertices.

Fisk provided a simple proof in [20] that broke up any polygon into a set of

triangles and showed that this set of triangles can be 3-colored which implies that
n

3

guards are sufficient for guarding a simple polygon.

Any polygon can be efficiently vertex guarded with a O(log(n)) approxima-
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tion factor where n is the number of vertices in the polygon. The algorithm is a

simple reduction to the combinatorial set cover problem. This reduction was shown

by Ghosh in [22]. This result can be improved for simple polygons using randomiza-

tion, giving an algorithm with expected running time O(nOPT 2
v log4 n) that produces

a vertex guard cover with approximation factor O(log OPTv) with high probability,

where OPTv is the smallest vertex guard cover for the polygon [14]. Whether a con-

stant factor approximation can be obtained for vertex guarding a simply polygon

is a longstanding and well-known open problem. Deshpande et al. [13] present a

pseudopolynomial randomized algorithm for finding a point guard cover with approx-

imation factor O(log OPT ). The point guarding problem seems to be much harder

than the vertex guarding problem and precious little is known about it [13].

1.5 Contributions

This thesis shows original results obtained for both the terrain guarding prob-

lem and the art gallery problem.

1.5.1 Terrain Guarding Results

The sequence of approximation algorithms for the terrain guarding problem

begs the question of whether the problem is NP -hard in the first place. The answer

to this question is unclear at the outset because straightforward attempts to show

NP -hardness run up against the following “Order Claim”:

Claim 1. Let a, b, c, d be four points on the terrain in increasing order of x-coordinates.

If a sees c and b sees d, then a sees d.
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a

b

d

c

Figure 1.14: Example showing the order claim.

Proof. It is easy to see that there is no point that lies above the line segment ac since

a sees c. It is also clear that no point lies above the segment bd since b sees d. By

the left-to-right ordering of a, b, c, and d, it is clear to see that no point can lie above

the line segment ad. Therefore a sees d. This claim is shown in Figure 1.14.

Natural attempts at constructing NP -hardness reductions for the terrain guard-

ing problem do not work because of the order claim. Lee and Lin provide a proof in

[33] that showed the art gallery problem was NP -complete. According to Demaine

and O’Rourke [12], the complexity of the terrain guarding problem was posted by

Ben-Moshe. We quote from [12]:

“What is the complexity of computing the guard set of minimum size for

a given x-monotone chain in the plane? According to the poser, most

tenured professors think the problem is NP -hard. This problem in fact

goes back to 1995, when Chen et al. [8] claimed an NP -hardness result,
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but ‘the proof, whose details were omitted, was never completed success-

fully‘” [29].

In this thesis, we were able to get around the order claim and prove NP -hardness

for both the discrete terrain guarding problem and the continuous terrain guarding

problem. The NP -hardness result will be shown in Chapter 21.

Given that the terrain guarding problem is NP -hard, this motivates finding

the best possible approximation. A 4-approximation for the discrete terrain guarding

problem is given in Chapter 32. The main building block of the 4-approximation

algorithm is an LP -rounding algorithm for one-sided guarding. Guided by these

fractional solutions we can partition the set of points to be guarded into two sets,

a set of points that is to be guarded from the left and a set of points that is to

be guarded from the right. One-sided guarding is a version of the terrain guarding

problem that requires points to be guarded to be seen by a guard to the left (or right).

Based on observations made from the 4-approximation, a (1+ǫ)-approximation

for the discrete terrain guarding problem was discovered. The (1 + ǫ)-approximation

is given in Chapter 43. Our PTAS for the terrain guarding problem is based on

local search. This work is inspired by the recent work of Mustafa and Ray [38] who

showed how to obtain a PTAS for other geometric set cover problems based on local

search. To apply the methodology they develop in the terrain guarding context,

1Appears in [30].

2Appears in [17].

3Appears in [23].
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we use observations made from the 4-approximation. Given the hardness result of

Chapter 2 and the PTAS in Chapter 4, this settles the computational complexity of

the terrain guarding problem.

1.5.2 Art Gallery Results

We show that the point guarding version of the art gallery problem where

the polygon is x-monotone has an O(1)-approximation in Chapter 54. The key idea

behind the O(1)-approximation is that we incrementally place guards starting from

the left side of the polygon and moving right. We then compare our solution to the

optimal solution and show that our solution can not be more than an O(1)-factor

worse than the optimal solution.

Chapter 5 will cover an NP -hardness proof for vertex guarding monotone

polygons [32]. The hardness result does not extend to point guarding. Our proof

forces guards to be placed at the vertices of our polygon. This hardness result is

much simpler than the hardness result for terrain guarding.

4Appears in [32].
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CHAPTER 2

TERRAIN GUARDING:NP-HARDNESS

2.1 Introduction

In this chapter we show the discrete terrain guarding problem is NP -hard.

This result extends to the continuous terrain guarding problem.

2.2 Reduction: Overview

In the discrete terrain guarding problem, the input is a set V of vertices, a set

G ⊆ V of candidate guards, and a set X ⊆ V of points to be guarded. Section 2.3

explains the gadgets used in the reduction in detail. A full example of the reduction

is given in Section 2.4.

We show a reduction from the planar 3SAT problem. This problem was shown

to be NP-complete in [35]. Planar 3SAT is defined as follows: Let Φ = (X, C) be an

instance of 3SAT, with variable set X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}

such that each clause consists of exactly three distinct literals. Define a formula

graph GΦ = (V, E) with vertex set V = X
⋃

C and edges E = E1

⋃

E2 where

E1 = {(xi, xi+1)|1 ≤ i ≤ n}, and E2 = {(xi, cj) | cj contains xi or xi}. A 3SAT

formula Φ is called planar if the corresponding formula graph GΦ is planar. The edge

set E1 defines a cycle on the vertices X, and thus divides the plane into exactly 2

faces. Each node cj ∈ C lies in exactly one of those two faces. We have to determine

whether there exists an assignment of truth values to the variables in X that satisfies

all the clauses in the C.
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C1

C−1

C0

C2

C−2

Figure 2.1: A coarse view of a terrain T constructed by our reduction showing chunks
C−2, C−1, C0, C1 and C2.

It is easy to see that the clauses inside the variable cycle can be generated by

performing a sequence β of steps starting with σ = 〈x1, . . . , xn〉 where at each step

we do one of the following until σ becomes empty:

1. Delete a variable from sequence σ and call the resulting variable sequence σ.

2. Generate a clause using three consecutive variables in σ and delete the middle

variable from σ. Call the resulting variable sequence σ.

Similarly there is a different sequence α of steps starting from σ = 〈x1, . . . , xn〉

that generates all clauses outside the variable cycle.
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The terrain T constructed by our reduction is shaped like a valley. A coarse

view of the terrain can be seen in Figure 2.1. We identify disjoint pieces of the terrain

called chunks. Even indexed chunks, C0, C2, C4, ..., C−2, C−4, ..., are on the left side

of the terrain and odd indexed chunks, C1, C3, ..., C−1, C−3, ..., are on the right side

of the terrain. Chunks C0, C1, C2, ..., Ck are used to “implement” the sequence β.

Chunks C0, C−1, C−2, ..., C−k′ are used to “implement” the sequence α.

Recall that we are considering the discrete terrain guarding problem; we have

a finite set of guards. Chunks contain distinguished points which are the points to

be guarded in our reduction. Chunks also contain a set of potential guard locations.

Distinguished points and the set of potential guard locations will be defined in Section

2.3.

Corresponding to each even chunk, Ci is a subsequence λi of the sequence of

variables 〈x1, x2, ..., xn〉. There will be 2|λi| guard locations, one for each of the 2|λi|

literals corresponding to the variables in λi
1. We will refer to these guard locations by

the corresponding literal names. Literal locations x and x corresponding to a variable

x are consecutive on the chunk but either may be to the left or right of the other.

The left to right ordering of literals in a chunk Ci corresponding to different variables

is according to λi if i is even. If i is odd, the right to left ordering of the literals

corresponding to different variables is according to λi.

Associated with each chunk Ci will be a number ni. In the reduction, ni guards

1Certain chunks are an exception, some chunks may have 2|λi|+ 2 literals. Most chunks
have 2 literals corresponding to 1 variable; certain chunks may have 4 literals corresponding
to 1 variable.
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will be needed within chunk Ci to see distinguished points in Ci. If less than ni guards

are placed in chunk Ci, no matter how many guards are placed elsewhere, certain

distinguished points in chunk Ci will go unseen. Without loss of generality, we assume

that chunk C0 is placed on the “left” side of the valley. For C0, λ0 = 〈x1, x2, ..., xn〉,

the literal locations in left-to-right order on the terrain are x1, x1, x2, x2, ..., xn, xn and

n0 = n. To guard C0 using n0 guards, we will have to place exactly n guards at

exactly n of the literal locations, with one guard for each variable or its complement.

Note that such a placement of guards specifies an assignment to the variables.

C0, C1, ..., Ck are used to implement the sequence β, as we now describe. Sup-

pose that we have added chunks C1, ..., Ci to implement steps β1, ..., βj of β. Let σ(j)

refer to the sequence σ after step βj. By construction, chunk Ci will have λi = σ(j).

Suppose βj+1 is a step in which we delete variable x from σ(j). Chunk Ci+1 will have

λi+1 = σ(j) \ x. We will have ni = |λi|, and ni+1 = |λi+1|. The relationship between

Ci and Ci+1 will be what we call a deletion, which has the following property: to

guard Ci and Ci+1 using ni + ni+1 guards, it is necessary that we have:

1. exactly ni+1 = |λi+1| guards at the literals within Ci+1, one for each variable so

that this corresponds to an assignment to the variables in λi+1;

2. exactly ni = |λi| guards at the literals within Ci, one for each variable so that

this corresponds to an assignment to the variables in λi;

3. The location of the guards must be consistent for all variables except x: There

is a guard at literal y in Ci if and only if there is a guard at literal y in Ci+1.
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Suppose that βj+1 is a clause step involving the variables x, y and z. This

requires up to two applications of an inversion gadget followed by a clause gadget.

An inversion involving a variable x uses three chunks Ci, Ci+1, and Ci+2. Its purpose

is to change the left to right ordering of literals x and x in Ci+2 to be opposite of that

in Ci. If the relationship between Ci, Ci+1, and Ci+2 is an inversion corresponding

to x, then λi+2 = σ(j) is the same as λi. We have ni = |λi|, ni+1 = |λi| + 1, and

ni+2 = |λi+2|. To guard Ci, Ci+1, and Ci+2 using ni+ni+1+ni+2 guards, it is necessary

that we have:

1. ni+2 = |λi+2| guards for Ci+2, one for each variable, as above;

2. ni+1 guards for Ci+1;

3. ni = |λi| guards for Ci, one for each variable;

4. The location of the guards must be consistent for all variables: There is a guard

at literal y in Ci if and only if there is a guard at literal y in Ci+2.

Suppose that βj+1 is a clause step involving x ∨ y ∨ z. The variables x, y and

z must occur consecutively in either left to right or right to left order in Ci; it must

also be the case that the literal x, the two literals corresponding to y and the literal z

occur consecutively in either left to right or right to left order in Ci. This can be seen

in Figure 2.2. Recall that βj+1 also deletes the middle variable y. By construction,

chunk Ci will have λi = σ(j). Chunk Ci+1 will have λi+1 = σ(j)\y. We have ni = |λi|

and ni+1 = |λi+1|. The relationship between Ci and Ci+1 will be what we call a clause
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y

z

x

y

x

z

w
w

Figure 2.2: Partial chunk showing the ordering of the variables w, x, y, and z.

gadget, which has the following property: to guard Ci and Ci+1 using ni+ni+1 guards,

it is necessary that we have:

1. ni+1 = |λi+1| guards for Ci+1, one for each variable;

2. ni = |λi| guards for Ci, one for each variable;

3. The location of the guards must must be consistent for all variables except y:

There is a guard at literal a in Ci if and only if there is a guard at literal a in

Ci+1;

4. There is a guard in Ci at one of x, y, or z.

Similar actions are done to build the chunks C−1, C−2, ..., C−k′ for the α se-

quence. Our discussion implies that chunks C−k′, ..., C0, ..., Ck can be guarded with
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∑k
−k′ ni guards if and only if we have a satisfying assignment to the planar 3SAT for-

mula Φ. The location of the guards in chunk C0 will tell us the truth value for each

variable. Our construction will be such that if Φ is satisfiable, then
∑k

−k′ ni guards

are sufficient for seeing all distinguished points. This will establish NP-hardness.

2.3 Reduction: Gadgets

The following subsections describe the gadgets introduced in Section 2.2. In

Section 2.3.1, we begin by describing the shape of a chunk and the location of the

literals corresponding to a variable. In Section 2.3.2, we describe the basic gadget

relating two chunks called the mirror gadget. Subsequently, we modify the variable

gadget to obtain the deletion gadget, the inversion gadget, and the clause gadget.

We will refer to the construction of chunks C1, C2, . . . , Ck as “going down” from C0,

and the construction of chunks C−1, C−2, . . . , C−k′ as “going up” from C0. Take an

arbitrary variable x in an even chunk Ci. Guard locations in Ci to the right of x

will be considered “below” x and guard locations in Ci placed to the left of x will

be considered “above” x. With odd chunks, guard locations to the left of x are

considered below and guard locations to the right are considered above. For example,

in Figure 2.2, w is above x; y is below x.

2.3.1 Variable Gadget

The first gadget we will describe is the variable gadget. An example of a

variable gadget for x in chunk Ci is shown in Figure 2.3. The variable gadget has a

variable distinguished point, d, that can be seen from only two vertices: the literals x
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and x vertices. The following is what we will refer to as the Uniqueness Claim:

Uniqueness Claim. No guard can see more than 1 variable distinguished point.

Because of the Uniqueness Claim, the total number of variable distinguished

points provides a lower bound on the number of guards that are necessary to guard

all of the distinguished points.

To see how multiple variables are placed, assume a chunk Ci has λi = 〈w, x, y, z〉.

Figure 2.2 shows how variable gadgets corresponding to each variable are placed

within the chunk. Chunk C0 has n such variable gadgets, 1 for each variable. In

Figure 2.2, 4 guards are required to guard the 4 variable distinguished points because

of the Uniqueness Claim.

x

d

x

Figure 2.3: Variable Gadget.
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Local Summary of Variable Gadgets: To guard the variable distinguished point

d for a variable x in chunk Ci, at least 1 guard must be placed at the literal x or x

guard location in Ci.

2.3.2 Mirroring

Going down, chunks Ci and Ci+1 form what we call a mirror gadget. Here, we

will have ni = |λi|, λi+1 = λi, and ni+1 = |λi+1|. The relationship between Ci and

Ci+1 will be what we call a mirroring, which has the following property: to guard Ci

and Ci+1 using ni + ni+1 guards, it is necessary that we have:

1. exactly |λi+1| guards at the literals within Ci+1, one for each variable so that

this corresponds to an assignment to the variables in λi+1;

2. exactly |λi| guards at the literals within Ci, one for each variable so that this

corresponds to an assignment to the variables in λi;

3. The location of the guards must be consistent for all variables: There is a guard

at literal y in Ci if and only if there is a guard at literal y in Ci+1.

To describe the mirroring for 1 variable, let us first focus on a variable gadget

corresponding to a variable b in chunks Ci and Ci+1, see Figure 2.4. We introduce

the notion of mirrored distinguished points corresponding to b in Ci+1. In Figure 2.4,

mirrored distinguished points are p and q. bi is the literal b in chunk Ci. bi+1 and bi

both see our mirrored distinguished point p but neither see q. bi+1 and bi both see

q but neither see p. A ray shot from bi through bi hits the terrain in Ci+1 above p.

This leads us to the following lemma:



32

bi

q

bi+1

Ci

bi+1

Ci+1bi

p

Figure 2.4: Mirroring one variable. Visibilities are as follows: bi sees {q, bi+1}. bi sees
{p, bi+1, bi+1}. bi+1 sees {q, bi+1, bi, bi}. bi+1 sees {p, bi+1, bi}.

Lemma 2. For two guards to see the variable distinguished points in Ci and Ci+1

corresponding to a variable b and the mirrored distinguished points corresponding to

variable b in Ci+1, it is necessary and sufficient to place guards at the literal b locations

in both chunks or guards at the literal b locations in both chunks.

Proof. Since we have two variable gadgets for b, the Uniqueness Claim states that two

guards are necessary to guard the variable distinguished points for b in Ci and Ci+1.

We claim two guards are sufficient to guard the mirrored and variable distinguished

points in Ci+1 and variable distinguished points in Ci. We must choose one guard

from {bi, bi} and one guard from {bi+1, bi+1}. If we place a guard at bi, q is not seen.

Since bi+1 does not see q, we must place a guard at bi+1. Similar arguments can be

made if we choose bi first.
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Mirroring up uses a similar proof. If a guard is placed at bi+1, a guard must

be placed at bi so that p is seen. Similarly with bi+1 and bi.

We see in Figure 2.5 how variable gadgets are constructed to ensure a guard

placed in one variable gadget does not see the mirrored distinguished points of a

different variable gadget. Let ai and bi belong to chunk Ci. To ensure that guards

placed at a literal guard location for one variable does not affect the mirroring of

another variable, in other words q should be seen by only ai+1 and ai and by no other

guards in Ci and Ci+1, similarly q′ should be seen by only ai+1 and ai and by no other

guards in Ci and Ci+1. The following are also true:

1. The line defined by ai and m hits the terrain above point p′. m blocks ai

from seeing distinguished points below the variable gadget a in Ci and below

the variable gadget for a in Ci+1. Recall that a ray shot from ai through ai

hits the terrain above q so ai does not see any distinguished points below the

variable gadget for a in Ci+1. It is also easy to see that ai and ai+1 do not see

any distinguished points below a in Ci. In general, a guard placed at a literal

for a variable h in some chunk Ci will not see any of the mirrored or variable

distinguished points of different variables below (to the right of) the variable

gadget for h in Ci or below (to the left of) the variable gadget for h in Ci+1.

2. Neither bi nor bi can see q or q′. This ensures that a guard placed at a literal

location for the variable b in Ci does not see any of a’s mirrored distinguished

points in Ci+1. The ray shot from bi through d hit the terrain above (to the right

of) q. Similarly for a ray shot from bi through d. A ray shot from bi through
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ai+1 hits the terrain above (to the right of) q′. Similarly for bi. In general, no

guard below (to the right of) the variable gadget for a ∈ Ci can see q or q′ nor

can any guard below (to the left of) the variable gadget for a ∈ Ci+1 see q or

q′. Note that the visibilities do not disrupt the order claim.

q

ai

ai

m

p′

q′

ai+1

p

bi

Ci

bi

ai+1

d

Ci+1

Figure 2.5: Variable gadgets do not interfere with each other. Important visibilities are
as follows: ai sees {q′, ai+1}. ai sees {q, ai+1, ai+1}. bi sees {p′, ai+1, ai+1}. bi sees
{p, ai+1, ai+1}. Note that the visibilities do not disrupt the order claim.

Local Summary of Mirroring Gadget Ci–Ci+1 going down: To guard the vari-

able distinguished points and mirrored distinguished points of Ci+1 and the variable

distinguished points of Ci with ni +ni+1 guards, it is necessary and sufficient to place

ni guards at literals in Ci and ni+1 guards at literals in Ci+1 in a consistent way.

For mirroring up, the Figure is exactly the same as Figure 2.5. The visibilities
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as described before do not change. Lemma 2 says that if we have a guard at ai+1, the

second guard is forced to be at ai. Similarly for ai+1 and ai.

Local Summary of Mirroring Gadget Ci+1–Ci going up: To guard the vari-

able distinguished points and mirrored distinguished points of Ci+1 and the variable

distinguished points of Ci with ni +ni+1 guards, it is necessary and sufficient to place

ni guards at literals in Ci and ni+1 guards at literals in Ci+1 in a consistent way.

Subsequent subsections will describe how we can modify a variable gadget to

place different gadgets, ie deletion, clause and inversion.

2.3.3 Deletion Gadget

A deletion of a variable x going down from chunk Ci to chunk Ci+1 involves

flattening out the terrain in chunk Ci+1 where the variable gadget for x would have

been placed.

w

x

y

w

y

Ci

Ci+1

Figure 2.6: Deleting a variable when mirroring down.
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Let us consider chunks Ci and Ci+1 going down when a deletion gadget is being

placed to delete variable x. The total number of guards needed will be ni+ni+1 where

ni = |λi| and ni+1 = |λi+1|. The list of variables in Ci+1, λi+1 = λi \ x. We replace

the variable gadget for x in Ci+1 with a flat surface as seen in Figure 2.6.

Ci+1

Ci−1

Ci

Flattened

Region

w

x
y

w

x

y

w

y

Figure 2.7: Deleting a variable when mirroring up. A more detailed view of variable x in
chunk Ci is shown in Figure 2.8

Local Summary of Deletion Gadget Ci–Ci+1 going down: To guard the vari-

able distinguished points and mirrored distinguished points of Ci+1 and the variable
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x

d

x

x

d

x

Figure 2.8: This Figure shows the region that is flattened out for a variable x when deleting
up the terrain. The left picture is what the x variable gadget originally looked like. The
right picture is what the variable gadget for x looks like after the mirrored distinguished
points are removed/flattened.

distinguished points of Ci with ni +ni+1 guards, it is necessary and sufficient to place

ni guards at literals in Ci and ni+1 guards at literals in Ci+1 in a consistent way.

Going up, we need three chunks Ci+1, Ci, and Ci−1 to construct a deletion

gadget for deleting variable x. We will have λi = λi+1, λi−1 = λi+1 \ x, ni+1 =

|λi+1|, ni = |λi| and ni−1 = |λi−1|. The total number of guards needed will be ni+1 +

ni +ni−1. We flatten out the mirrored distinguished points of variable gadget x in Ci

as seen in Figure 2.7 and Figure 2.8. The mirrored distinguished points for x in Ci

were originally there to help us mirror x from Ci to Ci+1. However, x is being deleted

so the mirrored distinguished points can go away as shown.

Local Summary of Deletion Gadget Ci+1–Ci–Ci−1 going up: To guard the

variable distinguished points and mirrored distinguished points of Ci+1 and Ci, and

the variable distinguished points of Ci−1 with ni+1 + ni + ni−1 guards, it is necessary
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c
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v

b

c

c

a

e

Figure 2.9: Clause going down, a detailed view of how the b variable gadget in Ci is modified
is shown in Figure 2.10. A detailed view of how the a variable gadget in Ci is modified is
shown in Figure 2.11.

and sufficient to place ni+1 guards at literals in Ci+1 and ni guards at literals in Ci,

and ni−1 guards at literals in Ci−1 in a consistent way.

2.3.4 Downward Clause Gadget

Let us say the clause we are constructing is Cli = (a ∨ b ∨ c), see Figure 2.9.

We will have λi+1 = λi\b, ni = |λi|, ni+1 = |λi+1|. The total number of guards needed

within Ci and Ci+1 will be ni + ni+1. We will replace the middle variable gadget b in

Ci+1 with our clause gadget. In chunk Ci, the left to right ordering of literals if i is

even (right to left if i is odd) must be exactly a, b, b, c. We will assume the ordering

is correct when placing a clause gadget2. In Figure 2.9, w is our clause distinguished

point. We can manipulate the b variable gadget in Ci so that b is blocked from seeing

w, see Figure 2.10. Two small changes are made to this variable gadget:

2Section 2.3.6 will show how to make a change if the ordering is incorrect.
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b

b

d

p

b

b

Figure 2.10: The left picture shows the original b in Ci. The right picture shows 2 small
changes. The first being the vertical lowering of literal guard location b. The second is the
extension of pd line segment.

b

b

e

m

b

b

e

m

Figure 2.11: The left picture shows the original a in Ci. The right picture shows the small
change. The top dotted line is the original visibility of the literal guard a. The bottom
dotted line is the new visibility of the literal guard a. To create this new visibility, the m

point is moved towards the e point.
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1. The b literal is moved downward vertically so it does not see w. This does not

affect previous downward mirrorings.

2. d is extended further on the pd line so that the visibility of b to the right

is unchanged. The angle defined by bpd is unchanged. Initially, b was blocked

from seeing mirrored distinguished points for c in Ci+1 by b in Ci. Since b moved,

the d point also needed to move so that b does not see into the c variable gadget

in Ci+1.

Referring back to Figure 2.9, the original use of the m point was to block a

potential guard placed at the a ∈ Ci guard location from seeing mirrored distinguished

points below (to the left of) the a variable gadget in Ci+1. In this case however, we

want a ∈ Ci to see w. We move our m point towards e so that the guard location

for a ∈ Ci sees w, see Figure 2.11. It should be noted that our mirroring of a is

not disrupted with this modification. This modification allows a ∈ Ci to see w. The

visibilities do not disrupt the order claim. It is important to note that a ∈ Ci does

not see w. Finally, we adjust the vw line segment by moving w slightly upwards so

that w sees c ∈ Ci. A ray shot from w through v will hit the terrain in chunk Ci at

point c so that c in Ci does not see w. It should be noted that the mirroring down

of a and c are still intact; we are still able to mirror the values of a and c down the

terrain. If neither a ∈ Ci nor b ∈ Ci nor c ∈ Ci is chosen as a guard location, we

require an extra guard to see w. However if one of these literals is chosen to be a

guard, our clause distinguished point w is guarded and no extra guard is needed.
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We also note that b will no longer be used in any future clauses going down-

ward. The reduction from planar 3SAT allows us to order the clauses in a certain

way to ensure that the middle variable will no longer be used in future clauses going

down the terrain. A detailed explanation on how the clauses are ordered, see Section

2.4. Because of this ordering, we can safely replace the b variable gadget in Ci+1 with

a clause gadget.

Local Summary of Clause Gadget Ci–Ci+1 going down: To guard the variable

distinguished points, clause distinguished point and mirrored distinguished points of

Ci+1 and the variable distinguished points of Ci with ni +ni+1 guards, it is necessary

and sufficient to place ni guards at literals in Ci and ni+1 guards at literals in Ci+1

in a consistent way. Note that if a guard is placed at literal locations a or b or c in

chunk Ci, our clause distinguished point is seen and no additional guard is required.

2.3.5 Upward Clause Gadget

The clause gadget going up is done similarly to mirroring variables upward with

a few small changes. We will have λi−1 = λi, λi−2 = λi \ b, ni = |λi|, ni−1 = |λi−1|

and ni−2 = |λi−2|. The total number of guards needed will be ni + ni−1 + ni−2. We

replace the highest (in this case leftmost) mirroring distinguished point of b ∈ Ci−1

with a clause distinguished point w. We flatten out the other mirroring distinguished

point for b ∈ Ci−1 similar to the deletion gadget, see Figure 2.12 for a broad view.

See Figure 2.13 for a detailed view of the modification of variable gadget b in chunk

Ci−1.
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Figure 2.12: Clause going up.

b

w Flattened Region

b

w

Figure 2.13: The left picture shows what the b variable gadget originally looked like in Ci−1

in Figure 2.12. The right picture shows the modified variable gadget to contain the clause
distinguished point.
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We make the following small modifications to our terrain, see Figure 2.12:

1. h is adjusted so that a in Ci−2 sees w. The original purpose of our h point was

to ensure that a ∈ Ci−2 did not see mirrored distinguished points below (to the

right of) a ∈ Ci−1. However, we want a ∈ Ci−2 to see w. It should be noted

that a ∈ Ci−2 does not see w.

2. w is adjusted accordingly so that a ray shot from w through b in Ci−1 sees the

literal guard location for c ∈ Ci−2. This allows c in Ci−2 to see w.

We now have only three literal guard locations that can see w: {b ∈ Ci−1,

a ∈ Ci−2, c ∈ Ci−2}. We note that the b variable can safely disappear as it will not

be needed in any other clauses going upwards because of the ordering of the clauses.

Section 2.4 explains in further detail why this is the case.

Local Summary of Clause Gadget Ci–Ci−1–Ci−2 going up: To guard the

variable distinguished points, clause distinguished point and mirrored distinguished

points of Ci−1, the variable distinguished points of Ci−2 and the variable and mirrored

distinguished points of Ci with ni + ni−1 + ni−2 guards, it is necessary and sufficient

to place ni guards at literals in Ci and ni−1 guards at literals in Ci−1 and ni−2 guards

at literals in Ci−2 in a consistent way. Note that if a guard is placed at a in Ci−2 or

b in Ci−1 or c in Ci−2, our clause distinguished point is seen and no additional guard

is required.
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2.3.6 Inversion Gadget

The left to right (right to left) ordering of literals becomes important when

placing a clause gadget and it is possible that the literals are “out of order.” In a

normal mirroring of variable a, the left to right order of a and a will be the same in

all even chunks, similarly with all odd chunks. To switch the order of the literals, we

make use of an inversion gadget.

Let us consider chunks Ci, Ci−1, Ci−2 when an inversion gadget is being placed

to invert a variable, see Figure 2.14. We will have λi−1 = λi, λi−2 = λi, ni =

|λi|, ni−1 = |λi−1| + 1 and ni−2 = |λi−2|. The total number of guards needed will be

ni + ni−1 +ni−2. The a literal in Ci−2 is to the right of a in Ci−2. Using the inversion

gadget in Ci−1, we can swap the left to right ordering of the a and a literal so that a

in Ci is to the left of a in Ci.

2.3.6.1 Inverting Down

In Figure 2.14, the variable gadget for a in chunk Ci−1 is replaced with an

inversion gadget. The inversion gadget adds two literal locations for variable a in Ci−1,

namely a′ and a′. The variable and mirrored distinguished points of a ∈ Ci−1 are being

replaced with five inversion distinguished points. These five inversion distinguished

points are: {x, z1, y1, y2, z2}. y1 and y2 should be thought of as “mirrored distinguished

points” since they are seen by guards inside chunk Ci−1 and by the a and a literal guard

locations in chunk Ci−2. z1 and z2 are the “variable distinguished points.” They are

variable distinguished points in the sense that no guard outside of the inversion gadget
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Figure 2.14: Inverting one variable.

for a in Ci−1 can see them. More importantly, z1 and z2 are considered replacement

“variable distinguished points” because they obey the Uniqueness Claim. z1 is only

seen by {a ∈ Ci−1, a′ ∈ Ci−1}. z2 is only seen by {a ∈ Ci−1, a
′ ∈ Ci−1}. The x point is

the special inversion distinguished point that allows the inversion to take place. The

important visibilities of Figure 2.14 are given here:

1. a ∈ Ci−1 sees {z1, v}.

2. a′ ∈ Ci−1 sees {z1, y1, x}.

3. a′ ∈ Ci−1 sees {x, y2, z2}.

4. a ∈ Ci−1 sees {z2, v
′}.
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5. a ∈ Ci−2 sees {y1}.

6. a ∈ Ci−2 sees {y2}.

Although not entirely obvious from the Figure, it’s important to note a ray

shot from a ∈ Ci−1 through a ∈ Ci−1 hits the terrain to the left of v ∈ Ci. These

visibilities do not disrupt the order claim.

Because of the Uniqueness Claim, it is necessary that we place 4 guards to

see the variable distinguished points of Ci, Ci−1 and Ci−2. If we place the 4 guards

in a consistent manner, the mirrored distinguished points of Ci and the inversion

distinguished points of Ci−1 will also be seen. The Uniqueness Claim states that we

must choose a guard from each of the following sets:

1. {a ∈ Ci, a ∈ Ci} so that we see the variable distinguished point for a in Ci.

2. {a ∈ Ci−2, a ∈ Ci−2} so that we see the variable distinguished point for a in

Ci−2.

3. {a ∈ Ci−1, a′ ∈ Ci−1} so that we see z1.

4. {a′ ∈ Ci−1, a ∈ Ci−1} so that we see z2.

Consistent placement of the guards ensures that the following distinguished

points are also seen: {v′, v, y1, x, y2}. The only 2 solutions are {a ∈ Ci, a ∈ Ci−2, a ∈

Ci−1, a
′ ∈ Ci−1} and {a ∈ Ci, a ∈ Ci−2, a ∈ Ci−1, a′ ∈ Ci−1}. Any other combination

of guards means at least 1 distinguished point is unseen. A detailed explanation of

this is explained in the next few paragraphs.
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We will only concern ourselves with the inversion of a and ignore the other

variables being mirrored. The other variables are being mirrored without consequence.

We will assume we already have a guard at a ∈ Ci−2 or a ∈ Ci−2. Because of the

Uniqueness Claim, it is necessary that we place 3 guards to see the remaining “variable

distinguished points” of z1, z2 and also the variable distinguished point of a ∈ Ci. If

we place the remaining 3 guards in a consistent manner, the remaining distinguished

points of y1, y2, x, v and v′ will also be seen.

Using the example in Figure 2.14, let us say a ∈ Ci−2 was chosen to be a

guard. We know at least 1 guard must be placed at a ∈ Ci or a ∈ Ci to see the

variable distinguished point of a in Ci leaving 2 guards to see the unguarded inversion

distinguished points: y2, x, z1 and z2. Let us first consider who can guard y2. The

only 2 guards that see y2 are a′ ∈ Ci−1 and a ∈ Ci−2. If we place a guard at a ∈ Ci−2,

one of the “variable distinguished points” of z1 or z2 will go unseen. Therefore we

must choose to place our guard at a′ ∈ Ci−1.

We have one guard left to place in the inversion gadget that must see z1. In

order to see both v and v′, we must place our guard at a ∈ Ci−1. The only other

choice is a′ ∈ Ci−1 but this guard does not see v or v′. Placing a guard at a ∈ Ci−1

leaves v′ and the variable distinguished point of a ∈ Ci unguarded. a ∈ Ci is chosen

to be a guard and the inversion is complete. Similar arguments are made showing

that if a ∈ Ci−2 is chosen, then a′ ∈ Ci−1, a ∈ Ci−1 and a ∈ Ci−1 must be chosen.
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Local Summary of Inversion Gadget Ci−2–Ci−1–Ci going down: To guard the

variable distinguished points and mirrored distinguished points of Ci, the variable,

mirrored and inversion distinguished points of Ci−1 and the variable distinguished

points of Ci−2 with ni + ni−1 + ni−2 guards, it is necessary and sufficient to place ni

guards at literals in Ci, ni−1 guards in Ci−1, and ni−2 guards at literals in Ci−2 in a

consistent way. If variable a is being inverted, the left to right ordering of the literals

a and a in Ci−2 are opposite of that in Ci.

2.3.6.2 Inverting Up

Similar arguments are used to show the inversion going up. The same vis-

ibilities hold and the same set of distinguished points must be seen. We will have

λi−1 = λi−2, λi = λi−2, ni = |λi|, ni−1 = |λi−1| + 1 and ni−2 = |λi−2|. The total

number of guards needed will be ni + ni−1 + ni−2.

Local Summary of Inversion Gadget Ci–Ci−1–Ci−2 going down: To guard the

variable distinguished points and mirrored distinguished points of Ci, the variable,

mirrored and inversion distinguished points of Ci−1 and the variable distinguished

points of Ci−2 with ni + ni−1 + ni−2 guards, it is necessary and sufficient to place ni

guards at literals in Ci, ni−1 guards in Ci−1, and ni−2 guards at literals in Ci−2 in a

consistent way. If variable a is being inverted, the left to right ordering of the literals

a and a in Ci are opposite of that in Ci−2.
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2.3.7 Local vs Global View of Gadgets

Having completed the construction, we see that for every chunk Ci we need ni

points placed within the chunk just to guard the variable distinguished points within

the chunk. This is given by the Uniqueness Claim. We now observe that the local

summary of any gadget holds good in a global sense, that is, it is independent of how

guards are placed in chunks outside this gadget. We illustrate this by summarizing

a mirror gadget using chunks Ci and Ci+1 going down. The reader may find it useful

to compare with the local summary in Section 2.3.2.

Global Summary of Mirroring Gadget Ci–Ci+1 going down: To guard the

variable distinguished points and mirrored distinguished points of Ci+1 and the vari-

able distinguished points of Ci with ni guards in Ci and ni+1 guards in Ci+1, it is

necessary to place ni guards at literals in Ci and ni+1 guards at literals in Ci+1 in a

consistent way. This necessity holds good for any placement of guards in locations

outside Ci and Ci+1. The local sufficiency condition obviously holds good for any

placement of guards outside Ci and Ci+1.

What this stronger condition means, in the context of Figure 2.5, is that ai+1

and ai are the only guard locations that see q among all possible guard locations on

the terrain. Similarly for points q′, p and p′. The argument for why this holds is the

same as the one made for guard locations within Ci and Ci+1. Having completed the

entire construction, we are only now in a position to state this global property. The

“necessary” parts of each of the gadgets are similarly modified to hold in a global
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sense.

2.3.8 Putting it all Together

Each chunk Ci in our construction needs ni guards within it. Because of the

Uniqueness Claim, the terrain we construct needs at least
∑k

−k′ ni guards just to

see all of the variable distinguished points3. Our construction ensures that if the

distinguished points can be seen by
∑k

−k′ ni guards, then the input formula must be

satisfiable. In particular, the assignment for the variables chosen by the n0 points in

chunk C0 must be consistently mirrored to all chunks and the clause distinguished

points must be seen. If the input formula is satisfiable, picking a satisfying assignment

and propagating it through our gadgets in the natural way results in a set of
∑k

−k′ ni

guards that see all of the distinguished points. Thus the proof of NP-hardness is thus

completed.

Theorem 3. Discrete terrain guarding is NP-hard.

2.3.9 Continuous Version

Using the same construction, it can be shown that the continuous version of

the terrain guarding problem is also NP-hard. We argue that the entire terrain can be

seen by
∑k

−k′ ni guards if and only if the input formula is satisfiable. The Uniqueness

Claim holds true despite guards being able to be placed anywhere on the terrain;

since there are ni variable distinguished points in chunk i, it follows that
∑k

−k′ ni are

necessary for seeing the entire terrain. We now argue that if
∑k

−k′ ni see the entire

3Plus any possible inversion distinguished points.



51

terrain, they can be assumed to be in guard locations from the earlier reduction.

From this, it follows that the formula is satisfiable.

Referring to Figure 2.3, the only potential guards that see d are points on a

line segment ad and points on a line segment da. Let’s say we pick a guard g on the

line segment ad. a will see every point that g does. If we choose g as our guard,

we can simply move our guard to a without any loss of visibility. Similar arguments

can be said about a and the line segment da. Therefore, we assume that any guard

placed in the sub-terrain [ada] is either at a or a. In particular, the only potential

guards for d are a and a. Similar arguments are made for the “variable distinguished

points” in the inversion gadget. Therefore the Uniqueness Claim holds true in the

continuous version; in other words the lower bound on the number of guards necessary

to guard the variable distinguished points is the same in the continuous version as in

the discrete version.

If the formula is satisfiable,
∑k

−k′ ni guards will see the entire terrain if the

guards are placed in satisfying locations. Clearly the distinguished points are all

seen. It can be shown that the terrain within the chunks is seen. The “empty

space” outside of the chunks is also seen. For any 2 chunks Ci and Ci−2 where

i = k, k − 1, k − 2, ..., 0,−1, ...,−k′ + 3,−k′ + 2, any guard in chunk Ci−1 will see the

“empty space” between Ci and Ci−2 because of the order claim. The “empty space”

above chunk C−k′+1 is seen by the guard placed at the literal for the last deleted

variable in chunk Ck′. The “top” of the terrain is drawn in such a way that a guard

placed for the last variable being deleted while “going up” will see the highest part
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Figure 2.15: Planar 3SAT Example.

of the terrain in chunk Ck′. As for the “bottom” of the terrain, the terrain can be

slightly modified between chunk Ck−1 to Ck so that the terrain connecting those two

chunks is seen by the only two remaining literals in chunk Ck−1. The entire terrain

is thus seen.

2.4 Reduction Example

The reduction from planar 3SAT is done in the following way. The reduction

given in this section combines several steps when visibility is not affected in an effort

to minimize the number of figures needed. For example, several variables might be
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deleted in one chunk where the reduction calls for only one deletion per chunk.

In Figure 2.15 we have an instance of planar 3SAT. There are clauses outside

the variable cycle and clauses inside the variable cycle. A clause Cli is connected to 3

distinct variables. For example, Cl2 = (c∨d∨e). We arbitrarily pick a variable to be

the lowest indexed variable and work clockwise around the variable cycle in increasing

order. In the example in Figure 2.15 we choose a to be the lowest index variable.

Our ordering of variables is a < b < c < d < e. This indexing of variables also gives

us the ordering of variable gadgets in chunks. In even chunks, a will be the leftmost

variable gadget, b will be the next leftmost, followed by c and so on. In odd chunks,

a will be the rightmost variable gadget, b will be the next rightmost, followed by c

and so on. Chunk C0 is shown in Figure 2.18. The interval of a clause Cli is denoted

I(Cli). The interval of a clause is defined as the span from the lowest index variable

in Cli to the highest indexed variable in Cli. From the example, I(Cl3) = (b, d).

We will focus on clauses outside of the variable cycle. We assume that each

clause has 3 distinct variables. Because of this and because our graph is planar, every

clause outside the variable cycle has a unique interval. Take two clauses outside the

cycle Cli and Clj. We know the intervals are distinct. Because of planarity, either the

intervals I(Cli) and I(Clj) have disjoint interiors or one of the intervals is properly

contained in the other. If I(Cli) is properly contained within I(Clj), we say that

clause Cli < Clj . We therefore have a partial ordering of the clauses. With this

partial ordering we construct a valid total ordering of all of the clauses both inside

the variable cycle and outside the variable cycle. The ordering of clauses outside the
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cycle are used when placing clauses going up the terrain. Similarly, intervals I(Cli)

and I(Clj) for clauses inside the variable ring either have disjoint interiors or I(Cli)

is properly contained within I(Clj).

Let us consider the ordering of clauses outside of the cycle, call this ordering Γ.

It is because of this ordering that we can delete the “middle” variable from the terrain

when we place our clause gadget. The middle variable is defined as the variable that

is not an endpoint of the interval. For example, if Cli = (c∨h∨r) and I(Cli) = (c, r),

our middle variable is h. Let us take the first clause in Γ, call this clause Cli. We

know that for every other clause Clj ∈ Γ, Clj ≮ Cli. Since we are placing the smallest

I(Cli) first, based on our partial ordering, we know there are no clauses less than Cli.

Since intervals do not overlap because of planarity, no other clause Clj ∈ Γ will use

the middle variable of Cli. Before we can place a clause gadget for Cli, there may be

unused variables in the span of I(Cli). We must first delete these unused variables

before generating a clause gadget for Cli.

As an example, consider Figure 2.15. We have three clauses on the outside of

the cycle and three clauses on the inside of the cycle. The following clauses are:

1. Cl1 = (a ∨ c ∨ e)

2. Cl2 = (c ∨ d ∨ e)

3. Cl3 = (b ∨ c ∨ d)

4. Cl4 = (a ∨ b ∨ d)

5. Cl5 = (a ∨ b ∨ c)
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6. Cl6 = (a ∨ d ∨ e)

The intervals of each of the clauses are:

1. I(Cl1) = (a, e)

2. I(Cl2) = (c, e)

3. I(Cl3) = (b, d)

4. I(Cl4) = (a, d)

5. I(Cl5) = (a, c)

6. I(Cl6) = (a, e)

A partial ordering of the clauses outside the cycle is Cl3 < Cl4 and Cl4 <

Cl6 and Cl3 < Cl6. A possible total ordering for clauses outside the ring is then

〈Cl3, Cl4, Cl6〉. A partial ordering of clauses inside the cycle is Cl2 < Cl1 and

Cl5 < Cl1. A possible total ordering for clauses inside the ring is 〈Cl2, Cl5, Cl1〉

or 〈Cl5, Cl2, Cl1〉.

The remainder of the example will use the planar 3SAT example shown in

Figure 2.16. The clauses for the example are defined as Cl1 = (a ∨ c ∨ d), Cl2 =

(a ∨ d ∨ e), Cl3 = (b ∨ c ∨ d), Cl4 = (a ∨ b ∨ d).

An overview of the entire terrain is shown in Figure 2.17. In each subsequent

figure, we will show the specific part of the terrain we are describing along with a

smaller version of the entire terrain to give reference to where we are on the terrain.

Each figure places small rectangles for literals chosen as guard locations.
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Figure 2.16: Planar 3SAT Example.

Figure 2.18 shows the details of chunk C0. Starting at chunk C0 we will work

our way downward. In our example, we have chosen to place guards at the literal

locations a, b, c, d, and e. We choose clause Cl1 as the first clause placed on the terrain

going downward from our total ordering obtained before.

Before we can place a gadget for clause Cl1 on the terrain, we must delete the

b variable since I(Cl1) = (a, d) and we only use the a, c and d variables. This deletion

is done in chunk C1 as shown in Figure 2.19. In this figure, the location where the b

variable gadget would be in C1 is replaced by a flat surface.

We are now ready to place a clause gadget and this is shown in Figure 2.20.

In this figure, the c variable gadget, as seen in the left in Figure 2.20, is replaced

with a clause gadget for clause Cl1, as seen in the right in Figure 2.20. If we were
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Figure 2.17: The entire terrain.
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e
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Figure 2.18: Chunk C0 which contains variable gadgets for all variables on the variable
cycle.
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z
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Figure 2.19: Chunk C1 which places a deletion gadget for variable b.
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n n

Cl1 distinguished point

Figure 2.20: Chunk C2 which places a clause gadget for clause Cl1.

a

e

d

d

Figure 2.21: Chunk C3 which places an inversion gadget for variable d.
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only doing a mirroring, a ray shot from the c mirrored distinguished point in chunk

C2 through n would hit the c literal location in chunk C1. However, since we are

replacing the c variable gadget with a clause gadget, we want two other literals to see

into c’s variable region, which now contains the Cl1 distinguished point. Those literal

locations being d in C1 and a in C1. The Cl1 distinguished point is adjusted upward

accordingly so that a ray shot from Cl1’s distinguished point through n would hit the

guard location for d ∈ C1. Referring back to Figure 2.19, we move the m towards p so

that a ∈ C1 sees Cl1’s distinguished point in chunk C2. Recall that m was originally

there to keep a from seeing into variable gadgets to the right of a in chunk C2. We

also move c ∈ C1 down so that it does not see Cl1’s distinguished point. We adjust

z so that c doesn’t see variable gadgets below the c variable gadget in C2. There are

now 3 literal locations that can see Cl1’s distinguished point, namely a ∈ C1, c ∈ C1,

and d ∈ C1. If any of these literals have a guard at their location, Cl1’s distinguished

point is seen, in other words, Cl1 is satisfied. It is also important to note that none

of these modifications affect the mirroring of variables a and d or any other variable.

The next clause that is placed is Cl2 = (a∨ d∨ e). Literals a and e are in the

correct location in chunk C2 but d is not. Therefore, the d variable must be inverted

before we can place the next clause gadget. We invert d in chunk C3 as shown in

Figure 2.21. After the inversion gadget is placed in chunk C3, the ordering of the d

and d literals in chunk C4 is correct. This is shown in Figure 2.22.

Once the literals are in the correct order, we can place our clause gadget for

Cl2. This is done in chunk C5 as shown in Figure 2.23. In this Figure, the d variable
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a

e

d

m

Figure 2.22: Chunk C4.

Cl2 distinguished point

n

Figure 2.23: Chunk C5 which places a clause gadget for clause Cl2 and a deletion gadget
for variable a and e.



62

gadget is replaced with a clause gadget for clause Cl2. The purpose of the n point

in Figure 2.23 was to ensure variable gadgets below d in chunk C4 did not see into

d’s variable gadget. In this case, we want 1 other literal to see into d’s variable

region, which is now our Cl2 distinguished point, that point being e ∈ C4. The Cl2

distinguished point is adjusted up accordingly. The literal d ∈ C4 is also adjusted

down accordingly. Referring back to Figure 2.22, we adjust the m point so that

a ∈ C4 sees Cl2’s distinguished point. Recall that m was originally there to keep

a from seeing into variable gadgets below a in chunk C5. There are now 3 literal

locations that can see Cl2’s distinguished point, namely a ∈ C4, d ∈ C4, and e ∈ C4.

If any of these literals have a guard at their location, Cl2’s distinguished point is seen

and the clause is satisfied.

As said in the beginning of this section, we are combining several deletions in

chunk C5 to save space. We show the deletion of the a and e variable in Figure 2.23.

The variable gadgets are simply replaced with flat surfaces.

This ends our reduction going downward and we count how many guards are

necessary going downward. Because of the uniqueness claim, each variable gadget

requires a guard to be placed at one of its literal guard locations. No other point on

the terrain sees these variable distinguished points so a guard is required to be placed

at a literal location for each variable gadget. We also add 1 extra guard for each

inversion gadget that was placed. Recall that an inversion requires 1 extra guard

because the inversion gadget has 2 “variable distinguished points”. We count the

number of variable gadgets in each chunk C0, C1, C2, C3, C4, and C5 and end up with
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a

e

d

d

c

b

Figure 2.24: Chunk C−1 which places an inversion gadget for variable d.

5 + 4 + 3 + (3 + 1) + 3 + 0 = 19.

We now consider placing gadgets going “up” the terrain. We wish to place a

gadget for clause Cl3 on our terrain but we must invert variable d first. Figure 2.24

shows chunk C−1 and the inversion of d.

We can now place a clause gadget for Cl3 = (b ∨ c ∨ d). We place this gadget

in chunk C−2 as shown in Figure 2.25. The mirrored distinguished point for c is

replaced with Cl3’s distinguished point. Since we are deleting c in this chunk, we

flatten out the other mirrored distinguished point for c. We move Cl3’s distinguished

point accordingly so that it sees the d guard location in chunk C−3.

The changes for the clause gadget are continued in chunk C−3 as shown in

Figure 2.26. The change we must make is adjusting the m point as seen before. The
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a

e

b

d

c

Cl3 distinguished point

Flattened region to delete c

Figure 2.25: Chunk C−2 which places a clause gadget for clause Cl3 and also deletes variable
c.

original purpose of m was to ensure b ∈ C−3 did not see other variables mirrored

distinguished points to the right of b ∈ C−2. However, this changes because we want

b ∈ C−3 to see Cl3’s distinguished point. The only guard locations that see Cl3’s

distinguished point are c ∈ C−2, b ∈ C−3 and d ∈ C−3. We also delete the e variable

in chunk C−3 to save space. To delete e, the mirrored distinguished points for e ∈ C−3

are flattened out.

Chunk C−4 is shown in Figure 2.27. In this chunk we place the clause gadget

for Cl4. We replace variable gadget b ∈ C−4 with a clause gadget for Cl4. Cl4’s

distinguished point is adjusted accordingly so that it sees the d literal guard location

in chunk C−5. Since this is the last clause to be placed and to save space, the a and

d variables are deleted in chunk C−5 as shown in Figure 2.28. Adjustments to the
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a

e
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d

b

Figure 2.26: Chunk C−3 which places a deletion gadget for variable e.

a

b

d

Cl4 distinguished point

Figure 2.27: Chunk C−4 which places a clause gadget for clause Cl4 and also deletes variable
b.
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a

d

Figure 2.28: Chunk C−5 which places a deletion gadget for variables a and d.

terrain in chunk C−5 are made similarly as before so that a sees Cl4’s distinguished

point. The only guard locations that see Cl4’s distinguished point are b ∈ C−4,

a ∈ C−5 and d ∈ C−5.

This ends our reduction going upward and we count how many guards are

necessary going upward. We note that each variable gadget requires a guard to be

placed at one of the literal points for that particular variable gadget because of the

Uniqueness Claim. No other point on the terrain sees these variable distinguished

points so a guard is required to be placed at a literal location for each variable gadget.

We also add 1 extra guard for each inversion gadget that was placed. Recall that an

inversion requires 1 extra guard. We count the number of variable gadgets in each

chunk C−1, C−2, C−3, C−4, and C−5 and end up with (5 + 1) + 5 + 4 + 3 + 2 = 20.

The entire terrain needs at least 39 guards. However 39 guards are sufficient
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if the planar 3SAT instance is satisfiable. Assuming consistent choices were made in

mirroring, no extra guards are required to see the mirrored distinguished points. If the

planar 3SAT instance is satisfiable, the entire terrain can be guarded with 39 guards

because the clause distinguished points will also be seen. If more than 39 guards are

required to see the entire terrain, the planar 3SAT instance is not satisfiable.
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CHAPTER 3

TERRAIN GUARDING:4-APPROXIMATION ALGORITHM

In this chapter we present a 4-approximation for the discrete version of the

terrain guarding problem. It is also worth noting that other algorithms are much

more complex than our algorithm. Our algorithm is a 4-approximation that runs in

polynomial time.

3.1 Exact Algorithm For One Sided Guarding

In this section, we provide an exact algorithm for one sided guarding. Recall

that the input for the discrete version of the terrain guarding problem is a set of

vertices P = {v1, v2, ..., vn}, a set of candidate guards G and a set of points to be seen

C. For left sided guarding, any point c ∈ C must see a guard that is to the left of c.

In other words, for each c ∈ C, there must exist a guard g ∈ G such that g ≤ c and g

sees c. We say that a point p < q if the x-coordinate of p is less than the x-coordinate

of q. The leftmost vertex of our terrain T will always be a guard. The leftmost guard

that sees vi is denoted L(vi). We use the following lemma to show that it is possible

to select the optimal set of guards for one sided guarding in polynomial time.

Lemma 4. Let T ′ be any nonempty set of vertices on the terrain that must be guarded.

There exists a vertex p ∈ T ′ such that p is not L(q) for any q ∈ T ′ and there is no

r ∈ T ′ where L(p) ≤ L(r) < r < p.

Proof. Assign p to be vn. It is true that p will not be the L(q) for any q ∈ T . If there

does not exist an r such that L(p) ≤ L(r) < r < p, then we are done. If such an r
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exists, assign p to be the rightmost such r and repeat. We note that the r will not

be L(q) for any vertex q. Suppose a q exists such that r is L(q) for some q. Since

r = L(q) > L(p), we must have that q < p. This contradicts the fact that r is the

rightmost vertex with L(p) ≤ L(r) < r < p. We will eventually reach the base case

where there is no vertex r where L(p) ≤ L(r) < r < p.

Algorithm

The algorithm takes as a parameter a set of points T ′ and returns an optimal

guarding set for the terrain.

leftSideTG(T ′)

1. If T ′ is empty, return ∅.

2. Find a p ∈ T ′ such that p is not L(q) for any q ∈ T ′ and there is no r ∈ T ′ such

that L(p) ≤ L(r) < r < p.

3. T ′′ ← T ′ \⋃

t ∈ T ′ such that xL(p) < xt and L(p) sees t.

4. Return leftSideTG(T ′′) ∪ L(p).

3.2 Proof of Algorithm

We prove by induction that leftSideTG(T ′) produces an optimal set of guards

for T ′. The base case is when T ′ is empty. We proceed to the inductive step where T ′

contains some set of points that need to be guarded. Let OPT be an optimal guard

set for T ′. Let us consider a point p ∈ T ′ chosen by leftSideTG(T ′) in step 2. There
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is a guard g ∈ OPT that sees p. This leads us to the following lemma:

Lemma 5. L(p) sees any point in T ′ that g sees.

Proof. This is clearly true if g = L(p). It must be the case that L(p) ≤ g ≤ p.

Assume g 6= L(p).

We observe that there is no r ∈ T ′ such that L(p) < r < p. By the order

claim, such an r must have L(p) ≤ L(r). This would give us L(p) ≤ L(r) < r < p.

This is not possible because of our choice of p.

We only have to show that a q ≥ p that is seen by g is also seen by L(p). If

g < p, it follows that L(p) will see such a point q by the order claim. We are left with

the case where g = p.

Suppose there is a point q that is seen by p but not by L(p) and p < q. q must

then lie below the ray shot from L(p) through p. Otherwise L(p) would see q. There

are no vertices in T ′ that lie to the left of L(p) that lie above the line segment L(p)p

by the definition of L(p). It must be the case the p = L(q). However, this contradicts

our choice of p in step 2.

We thus conclude that L(p) sees any point in T ′ that g sees. We now have

OPT \ {g} as a guarding set for T ′′. T ′′ is all points in T ′ that L(p) does not see.

By the inductive hypothesis, leftSideTG(T ′′) is a guarding set for T ′′ whose size is at

most OPT \ {g} = OPT − 1. Therefore leftSideTG(T ′) = {L(p)}∪ leftSideTG(T ′′)

is a guarding set for T ′ whose size is at most OPT .

An algorithm called rightSideTG(T ) works similarly and is shown below.
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rightSideTG(T ′)

1. If T ′ is empty, return ∅.

2. Find a p ∈ T such that p is not R(q) for any q ∈ T and there is no r ∈ T such

that p < r < R(r) ≤ R(p).

3. T ′′ ← T ′ \⋃

t ∈ T ′ such that t < R(p) and R(p) sees t.

4. Return rightSideTG(T ′′) ∪ R(p).

3.3 Algorithm Example

Consider Figure 3.1 to help explain Lemma 4 and the algorithm leftSideTG.

Initially T ′ = {a, b, c, d}. We would not be allowed to pick a initially because a is L(b).

However b is able to be chosen as our p. We place a guard at a = L(b) and continue.

T ′ ← T ′ \ {a, b}, therefore T ′ = {c, d}. In the next iteration of leftGuardTG, c is

initially chosen to be our next p. However, this is also not allowed since we have an r

such that L(p) ≤ L(r) < r < p, namely L(c) ≤ L(d) < d < c. Therefore, d becomes

our new p. We now place a guard at L(d) and continue on. These are the two cases

in picture form.

Theorem 6. There exists a polynomial time algorithm that optimally guards a terrain

from the left (resp. right).
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b
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L(a)
L(c)

L(b)

d

L(d)

Figure 3.1: Sample terrain.

3.4 LP-approach

The following section will describe the 4-approximation algorithm for the prob-

lem of finding the smallest subset of vertices that guard all terrain vertices. The

approach is based on solving the linear program (LP) relaxation of terrain guarding.

We then round a fractional solution to an integer solution. The objective function of

the LP:

min
∑n

i=1 wi.

The variable wi’s range over the non-negative real numbers. The constraints

of the LP are:

∀y ∈ P,
∑

i:i sees y wi ≥ 1.
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Each guard i may be thought of as a fractional guard whose fraction is wi.

The constraint above states that each vertex y ∈ T ′ sees a set of fractional guards on

the terrain; the sum of those fractional guards must be greater than or equal to 1.

Let (w1, w2, ..., wn) be the optimal solution of the LP. It is clear that
∑n

i=1 wi ≤

OPT where OPT is the optimal terrain guard cover. We now place each vertex that

must be guarded into two sets, L or R. A vertex will be placed in the set L if the

following is true:

∑

i:i≤y and i sees y wi ≥ 1
2
.

If the vertex is not placed in the set L, it is placed in the set R. We now

have two sets of vertices that must be guarded. Let us set li = 2wi for each vertex

i. Note that for each q ∈ L, we have
∑

i:i≤q and i sees q li ≥ 1. We call the procedure

leftGuard(L, l) which produces a set of at most
∑n

i=1 li guards that see each vertex

x ∈ L from its left. We call a similar procedure rightGuard(R, l) that produces a set

of at most
∑n

i=1 li guards that see each vertex x ∈ R from the right. We return the

union of these two sets of guards. The size is at most 2
∑n

i=1 li ≤ 4
∑n

i=1 wi ≤ 4OPT ,

thus we have a 4-approximation.

We now describe the procedure leftGuard(L′, l′). It takes as input a set of

guards L′ and a non-negative vector l′ = (l′1, l
′
2, ..., l

′
n) such that for any q ∈ L′ we

have
∑

i:i≤q and i sees q l′i ≥ 1. As we will show, the procedure returns a set of at most

∑n
i=1 l′i guards that sees each vertex in L′ from its left.

leftGuard(L′, l′)
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1. If L′ = ∅, return ∅.

2. Find a p ∈ L′ such that p is not L(q) for any q ∈ L′ and there is no r ∈ L′ such

that L(p) ≤ L(r) < r < p.

3. L′′ ← L′ \⋃

t ∈ L′ such that t < R(p) and R(p) sees t.

4. l′′i ← 0 for each vertex i in the range [L(p), p]. Let l′′i ← l′i for every other vertex.

5. Return L(p) ∪ leftGuard(L′′, l′′).

Lemma 7. Assuming that
∑

i:i≤q and i sees q l′i ≥ 1 for each q ∈ L′, leftGuard(L′, l′)

returns a set of at most
∑n

i=1 l′i guards that see each point in L′ from its left.

Proof. The proof is by induction on |L′|. The base case is when |L′| = 0. Consider

the inductive step. Any guard that sees the p chosen in step 2 must lie in the range

[L(p), p]. Thus, the sum of the l′ values of vertices in this range is at least 1. Therefore,

∑n
i=1 l′′ ≤ ∑n

i=1 l′i − 1. Using Lemma 5, we can assert that any q ∈ L′ that is seen

from its left by some g ∈ [L(p), p] is also seen by L(p). It follows that any q ∈ L′′ is

not seen from its left by any g ∈ [L(p), p]. So l′′i = l′i for any i that sees q ∈ L′′ from

its left. Thus we have
∑

i:i≤q and i sees q l′′i ≥ 1 for any q ∈ L′′.

Using the inductive hypothesis, we conclude that leftGuard(L′′, l′′) computes a

set of at most
∑

i l
′′
i guards that see each point in L′′ from its left. So leftGuard(L′, l′)

computes a set of at most 1 +
∑

i l
′′
i ≤

∑

i l
′
i guards that see each point in L′ from its

left.
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The procedure rightGuard(R′, r′) works analogously. We conclude with the

main result of this section.

Theorem 8. There exists a polynomial time algorithm that provides a 4-approximation

to the vertex terrain guarding problem.
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CHAPTER 4

TERRAIN GUARDING:(1 + ǫ)-APPROXIMATION ALGORITHM

This chapter considers the discrete terrain guarding problem and shows a

polynomial time algorithm that returns a guard cover whose cardinality is at most

(1 + ǫ) ·OPT for any ǫ > 0. Here, OPT denotes the cardinality of an optimal guard

cover.

The inspiration for our work comes from the recent results of Chan and Har-

Peled [7] and Mustafa and Ray [38]. Chan and Har-Peled show that a local search

algorithm actually yields a PTAS for the maximum independent set problem given a

collection of disks. Unlike a previous PTAS for the problem [19], their analysis does

not use packing arguments and thus also applies to “pseudo-disks”. Mustafa and

Ray consider several geometric hitting set and set cover problems and describe local

search algorithms that yield PTASs. For instance, in a rather surprising result they

obtain a PTAS for the problem of covering a set of points by the smallest number

of a given set of disks. Both papers use separator theorems for planar graphs. In

particular, they show that there exists a planar graph that relates the locally optimal

solution returned by the local search and the global optimal solution. The separator

theorem is then used to show that the locally optimal solution is not too much worse

than the global optimum.

Our PTAS for the terrain guarding problem is also based on local search. Our

key contribution is to show the existence of an appropriate planar graph even for the

terrain guarding context. Having shown this, the rest of the analysis is very similar
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to that of Mustafa and Ray [38].

4.1 Guarding Terrains via Local Search

Recall that our input is a polygonal terrain, a set X of points on the terrain that

need to be guarded, a set G of possible guard locations, and a parameter 0 < ǫ < 1.

For purposes of exposition, we will assume that X∩G = ∅. We describe a polynomial

time algorithm that returns a subset Q ⊆ G that sees X, so that |Q| is at most a

factor (1+ ǫ) times the size of the smallest subset of G that sees X. Let n denote the

input size – the number of vertices in the terrain, plus |G|, plus |X|.

We say that a subset of G that sees X is b-locally optimal if one cannot obtain

a smaller set of guards that sees X by deleting at most b guards from it and inserting

at most b− 1 guards.

Our algorithm simply returns a b-locally optimal solution for b = α
ǫ2

, where α

is a suitably large constant, by performing local search. We start with some arbitrary

Q ⊆ G that covers X. For every subset S ⊆ Q of size at most b, we see if there exists

a subset T ⊆ G \Q of size at most |S| − 1 such that (Q \ S) ∪ T guards X. If so, we

set Q ← (Q \ S) ∪ T . Every such exchange decreases the size of Q by at least one,

and as such can happen at most n times. Since there are
(

n
b

)

subsets S to consider,

the running time is bounded by nO(b).

4.1.1 Approximation Analysis

Let R′ denote the optimal cover for X, and B′ the set of guards output by our

local search algorithm on termination. We show that |B′ \R′| ≤ (1 + ǫ)|R′ \B′|, and
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thus |B′| ≤ (1 + ǫ)|R′|. Let R ≡ R′ \ B′, B ≡ B′ \ R′, and abusing notation, let X

denote the set after removing all points seen by R′ ∩B′. So now both R and B cover

X and we wish to show that |B| ≤ (1 + ǫ)|R|. We will refer to points in B as blue

points and points in R as red points.

The following lemma is our main contribution; it shows that the locality con-

dition of Mustafa and Ray [38] is satisfied.

Lemma 9. There exists a planar graph G = (V ≡ R ∪ B, E) with the property that

for each x ∈ X, there is an edge (r, b) in G between guards r ∈ R and b ∈ B that both

see x.

Before giving the proof, we show how the lemma implies that |B| ≤ (1+ ǫ)|R|;

this is similar to [7, 38]. We need the following partition theorem on planar graphs

due to Frederickson [21]. For U ⊆ V , let Γ(U) denote the set of neighbors in G of

vertices in U with U excluded. Let µ = |V |.

Lemma 10. For any parameter 1 ≤ r ≤ µ, we can find a set S ⊆ V of size at most

c1µ/
√

r and a partition of V \S into µ/r sets V1, V2, . . . , Vµ/r, satisfying (i) |Vi| ≤ c2r,

(ii) |Γ(Vi)| ≤ c3

√
r, and (iii) (Vi ∪ Γ(Vi)) ∩ Vj = ∅ for i 6= j. Here, c1, c2, and c3 are

absolute positive constants.

Let us apply the lemma with r ≡ b/(c2 + c3). We have |Vi ∪ Γ(Vi)| ≤ c2r +

c3

√
r ≤ b. Thus, letting Ri = R∩Vi and Bi = B∩Vi, we must have |Bi| ≤ |Ri|+|Γ(Vi)|.

For otherwise, the local search can replace Bi by Ri ∪ Γ(Vi) and obtain a smaller set

that still covers X (Lemma 9), a contradiction.
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Thus

|B| ≤ |S|+
∑

i

|Bi| ≤ |S|+
∑

i

|Ri|+
∑

i

|Γ(Vi)| ≤ |R|+ c
µ√
r

≤ |R|+ c′
|R|+ |B|√

b
,

where c and c′ are positive constants. With b a large enough constant times 1/ǫ2, this

implies that |B| ≤ (1 + ǫ)|R|.

4.1.2 Proof of Lemma 9

We begin with some notation. For points a and b on the terrain, we say

a ≤ b to mean that the x-coordinate a.x of a is at most b.x. We use the notation of

intervals that this implies – for instance, [a, b] denotes all points c on the terrain so

that a ≤ c ≤ b.

We now prove Lemma 9. Let us first construct the planar graph G. For each

x ∈ X, let λ(x) denote the leftmost point that sees x among points in R ∪ B to the

left of x, assuming such a point does exist. Similarly, let ρ(x) denote the rightmost

point that sees x among points in R∪B to the right of x, assuming such a point does

exist. Note that at least one of λ(x) or ρ(x) does exist.

Let A1 denote the set of segments λ(x)x, for x ∈ X. Because of the order

claim, these segments do not cross. For each v ∈ R∪B, shoot a vertical ray up from

v; if this ray hits some segment in A1, let λ(y)y denote the first such segment hit; we

add the edge (v, λ(y)) to a set E1 if v and λ(y) are of opposite colors.

Now, the edges in A1∪E1 can be embedded above the terrain in a non-crossing

way. To see this, let A1 be embedded as the original straight line segments. To embed
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Figure 4.1: The embedding of A1∪E1, with X = {x, x′, x′′}, and R∪B = {v0, v1, v2, v3, v4}.
Segments in A1 are shown in dashed lines, and the edges in E1 are embedded as dashed
curves with arrows. Note that v0 = λ(x) = λ(x′′), and v2 = λ(x′).

an edge of the form (v, λ(y)) ∈ E1 as above, we travel straight up from v till we hit

λ(y)y, and then slide along the segment λ(y)y to reach λ(y). See Figure 4.1.

Let A2 denote the set of segments xρ(x), for x ∈ X. Again, these segments do

not cross. For each v ∈ R ∪ B, shoot a vertical ray up from v; if this ray hits some

segment in A2, let yρ(y) denote the first such segment hit; we add the edge (v, ρ(y))

to a set E2 if v and ρ(y) are of opposite colors.

The edges in A2∪E2 can also be embedded above the terrain in a non-crossing

way. We “flip” the embedding of A1 ∪E1 to obtain a non-crossing embedding below

the terrain; see Figure 4.2. This gives us a planar embedding of A1 ∪E1 ∪ A2 ∪ E2.

Finally, for each x ∈ X, we add the edge (λ(x), ρ(x)) to a set E3 if λ(x) and

ρ(x) are of opposite colors. Our graph G consists of the edge set E1 ∪E2 ∪ E3. This

is a planar graph; just embed E1 and E2 as above, and for each (λ(x), ρ(x)) ∈ E3,

embed it using the embedding of the segments λ(x)x and xρ(x).
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Figure 4.2: A combinatorial embedding of A1 ∪ E1 from Figure 4.1, and flipping it so that
A1 ∪E1 is now embedded below the terrain. Note that only the edges in A1 ∪E1 are being
flipped to make room for A2 ∪ E2; the vertex set R ∪B ∪X retains its embedding.

Now we need to show that for each x ∈ X, there are points r ∈ R and b ∈ B

that see x, and (r, b) ∈ E1 ∪E2 ∪E3. Fix an x ∈ X. If λ(x) and ρ(x) are of opposite

colors, then (λ(x), ρ(x)) ∈ E3, and we are done. Otherwise, it must be the case that

there are red and blue points to the left of x that see x, or that there are red and

blue points to the right of x that see x.

Let us assume that the first case holds (there are red and blue points to the

left of x that see x), and that λ(x) is red. The other situations are symmetric. Let

b be the leftmost blue point that sees x; it must be that b ∈ (λ(x), x). Thus the ray

shot up from b hits λ(x)x; let λ(y)y be the first segment in A1 that it hits. Because

segments in A1 don’t cross, it must be that λ(y) ∈ [λ(x), b) and y ∈ (b, x). The order
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claim (applied to λ(y), b, y, and x) implies that λ(y) sees x. Now λ(y) cannot be

blue, otherwise b is not the leftmost blue point that sees x. Thus λ(y) ∈ R, b ∈ B,

both λ(y) and b see x and (b, λ(y)) ∈ E1. This completes the proof.
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CHAPTER 5

APPROXIMATE GUARDING OF MONOTONE POLYGONS

In this chapter, we show in Section 5.2 that the problem of finding the smallest

number of vertex guards to guard a monotone polygon is NP-hard. We also give a

constant factor approximation to the art gallery problem using monotone polygons

in Section 5.3.

5.1 Definitions

An instance of the art gallery problem contains a polygon P . The polygon

is defined by a set of points V = {v1, v2, ..., vn}. There are also edges connecting

(vi, vi+1) where i = 1, 2, ..., n − 1. There is also an edge connecting (vn, v1). These

edges give us two disjoint regions: inside and polygon and outside the polygon. For

any two points p, q ∈ P , we say that p sees q if the line segment ab does not go outside

of P . We wish to find a set of vertices G ⊆ P such that every point p ∈ P is seen by

a guard in G. We call this set G a guarding set. The optimization problem is thus

defined as finding the smallest such G.

A polygon P is l-monotone if there is a line of monotonicity l such that any

line orthogonal to l has a simply connected intersection with P. When we talk about

monotone polygons, we will henceforth assume that they are x-monotone, i.e., the

x-axis is the line of monotonicity for the polygons we consider; see Figure 5.1.

The boundary of a monotone polygon P can be subdivided into two chains,

the upper chain U and the lower chain D. Let s and t be the leftmost and rightmost
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s

monotone rectilinear

t

Figure 5.1: Illustrating the polygon classes.

vertices of P respectively. The chain U consists of the boundary path followed from

s to t in clockwise direction, whereas D is the boundary path followed from s to t in

counterclockwise direction.

A polygon P is rectilinear if the boundary of P consists of axis parallel line

segments. Hence, at all vertices, the interior angle between segments are either 90 or

270 degrees; see Figure 5.1.

Let VP(p) denote the visibility polygon of P from the point p, i.e, the set of

points in P that can be connected with a line segment to p without intersecting the

outside of P.

Consider a partial set of guard points g1, . . . , gm in P and the union of their

visibility polygons
⋃m

i=1 VP(gi), the set P \⋃m
i=1 VP(gi) is the region of P not seen

by the points g1, . . . , gm. This region consists of a set of simply connected polygonal

regions called pockets bounded by either the polygon boundary or the edges of the

visibility polygons.

The following definitions are useful for monotone polygons. Let q be a point

in VP(p) that lies to the right of p. We denote by VPR(p, q) the part of VP(p) that
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Figure 5.2: Illustrating the proof of Lemma 11.

lies to the right of q. Also, VPR(p) = VPR(p, p).

A pocket in a monotone polygon P is an upper pocket if it is adjacent to the

upper boundary U of P, a lower pocket if it is adjacent to the lower boundary D but

not U and a middle pocket if it is adjacent to neither U nor D.

Let SP (p, q) denote the shortest (Euclidean) path between points p and q

inside P.

Lemma 11. If q is a point on SP (p, t) inside a monotone polygon P, then VPR(p, q) ⊆

VPR(q).

Proof. Let r be a point to the right of q in P that is visible from p. To prove that r

is seen from q consider the vertical line through r and its intersection point r′ with

SP (p, t). The three points p, r, and r′ define a polygon in P having three convex

vertices and possibly some reflex vertices on the path SP (p, r′). Since r sees both p

and r′, r sees all of the path SP (p, r′) and hence also the point q; see Figure 5.2.
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Mirroring patterns
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Figure 5.3: The two types of variable patterns.

5.2 Vertex Guarding Monotone Polygons:NP-Hardness

In this section we will show that vertex guarding a monotone polygon is NP-

complete. The reduction is from 3SAT. A 3SAT instance (X , C) contains a set of

Boolean variables, X = {x1, x2, . . . , xn} and a set of clauses, C = {c1, c2, ..., cm}.

Each clause contains three literals, ci = li,1 ∨ li,2 ∨ li,3 so that li,j = xk or li,j = x̄k. A

3SAT instance is satisfiable if a satisfying truth assignment for C exists such that all

clauses ci are true.

We will show that any 3SAT instance is polynomially transformable to an

instance of vertex guarding a monotone polygon. We will construct a monotone

polygon P from the 3SAT instance such that P is guardable by K or fewer guards if

and only if the 3SAT instance is satisfiable. We will first present some basic constructs

to show how the polygon will be constructed. We will then connect them to create

a polygon. Let K = n (m + 1), n is the number of variables and m the number of

clauses of the 3SAT instance.

Starting Variable Pattern: The starting variable pattern is shown to the left in Fig-

ure 5.3. The bottom of the downward spike b(x) of the figure is the distinguished
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vertex of the pattern. This area is only seen by x and x̄ and must be guarded

by one of these two vertices. This pattern will appear along the lower boundary

of the monotone polygon a total of n times, one corresponding to each variable.

Mirroring Variable Pattern: This variable pattern is shown to the right in Figure 5.3.

Once again, the bottom of the spike at b(x) must be guarded by either x or x̄.

We also note that vertices d(x) and d(x̄) must both be seen and this is what

forces our choice of guard at x or x̄. In the final polygon mn of these patterns

will be present also along the lower boundary.

Figure 5.4 shows how the starting variable patterns are connected to mirroring

variable patterns. If we choose xj in the starting variable pattern, we are forced

to continuing to choose xj in each of subsequent mirroring variable patterns. If

we at some mirroring pattern would choose x̄j instead of xj , the distinguished

points d(xj) is not seen. Similarly, if we in the starting pattern choose x̄j , we are,

by the same argument, forced to continuing to choose x̄j in each of subsequent

mirroring variable patterns.

Clauses: For each clause c in the boolean formula, there is a sequence of mirroring

variable patterns x1, x̄1, x2, x̄2, . . . , xn, x̄n along the lower boundary and a clause

pattern along the upper boundary of the polygon. The clause pattern consists

of three vertices in an upward spike such that the top vertex of the spike is

only seen by the mirroring variable patterns corresponding to the literals in the

clause; see Figure 5.5. We denote the top vertex of the spike by c to correspond
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Figure 5.4: Variable patterns transferring logical values.

to the clause.

We choose our truth value for each variable in the starting variable patterns.

The subsequent mirroring variable patterns transfer that decision along to all the

other mirroring variable patterns on the lower boundary of the polygon; see Figure 5.4.

In the example of Figure 5.5 the 3SAT clause corresponds to c = x1 ∨ x̄3 ∨ x5.

Hence, a vertex guard placement that corresponds to a truth assignment that makes

c true, will have at least one guard on x1, x̄3 or x5 and can therefore see vertex c

without additional guards.

Note that we still have variables x2 and x4 in the clause, however none of them

or their negations see the vertex c. They are simply there to mirror their truth values

along in case these variables are needed in later clauses.
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Figure 5.5: A mirroring variable pattern sequence with its clause spike.

The monotone polygon we construct consists of 4n + (6n + 3)m + 1 vertices.

Each starting variable pattern having four vertices, each mirroring pattern six ver-

tices, the clause spike consists of three vertices and a final vertex connecting the

distinguished edges of the two lowermost mirroring patterns on the lower boundary.

Exactly K = n(m + 1) guards are required to guard the polygon since there

are K bottom vertices b(xj) at downward spikes and no vertex in the polygon can see

more than one such b(xj) vertex.

If the 3SAT instance is satisfiable, then we place guards at vertices in accor-

dance to whether the variable is true or false in each of the sequences of variable

patterns. Each clause vertex is seen since one of the literals in the associated clause
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is true and the corresponding vertex has a guard.

Suppose we have a vertex guard cover of size exactly K. Since each bottom

spike b(xj) is guarded there is a guard at one of xj , x̄j , or b(xj) itself. This make up

K guards so there can be no other guards. Since each clause vertex ci is also seen,

we can establish which of the guards see this vertex and deduce a satisfying truth

assignment from this guard placement.

It is easy to see that the construction of the polygon can be done in polynomial

time so we have proved the following theorem.

Theorem 12. Finding the smallest vertex guard cover for a monotone polygon is

NP-hard.

Note that our proof does not immediately generalize to interior guards. Prov-

ing NP-hardness for interior guards in monotone polygons seems to require completely

different techniques. In the next section, we show how to approximate the minimum

number of interior guards in a monotone polygon.

5.3 Interior Guarding Monotone Polygons

In this chapter we describe a polynomial time algorithm for point guarding

a monotone polygon. Our algorithm will return a solution that is no worse than

O(1)*OPT where OPT is the number of guards in the optimal solution.

Our algorithm for guarding a monotone polygon P will incrementally guard

P starting from the left and moving right. Hence, we are interested in the structure

of the pockets that occur when guarding is done in this way. We first define kernel
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Figure 5.6: Illustrating pockets.

expansions of the pockets given a partial guard cover Gp, and then taking maximal

nonempty intersection of these we produce the main region that we will be interested

in. This region is called a spear and with this we can define a well behaved guard cover

G∗ that has small size. We finally prove that our incremental algorithm produces a

guard cover at most a constant times larger than G∗.

Assume that we have a partial guard cover Gp in P. Consider the upper pockets

resulting from this guard cover and enumerate them pU
1 , . . . from left to right. The

lower pockets are enumerated from left to right pD
1 , . . . in the same way; see Figure 5.6.

We disregard any middle pockets for now and return to them later.

Let pU be an upper pocket. The kernel expansion of pU , denoted ke(pU),

consists of all the points in P that see everything in pU to the left of themselves; see

Figure 5.7. For the lower pockets we define the kernel expansion symmetrically. The
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Figure 5.7: Illustrating the kernel expansions.

definition of kernel expansion is valid also when no guards have as yet been placed in

the polygon. In this case, we take all of the polygon P to be a single upper pocket.

Let k be the largest index so that
⋂k

i=1 ke(pU
i ) is nonempty. This nonempty

intersection of kernel expansions is called the upper spear, also denoted spU ; see

Figure 5.7. We can in the same way define the lower spear spD as the maximal

nonempty intersection of the kernel expansions for the lower pockets.

Given the partial guard cover Gp the upper spear spU can be computed in linear

time as follows. For an upper pocket pU
i , we let rU

i be the leftmost upper boundary

point and qU
i be the rightmost upper boundary point; see Figure 5.8. Traverse the

edges of the upper boundary in the upper pockets pU
1 ,pU

2 , . . . in order from s to t and

for each boundary edge e having some part in a pocket issue a half line directed in

the same direction as the traversal. When the last edge of a pocket pU
i is reached we

add the half line issuing from qU
i towards the vertex wi that maximizes the interior
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angle without intersecting the exterior of P above U ; see Figure 5.8. The point wi

is established as we traverse the U from qU
i to rU

i+1. This gives us a sequence of half

lines

{he1,1
, he1,2

, . . . he1,l1
, h[qU

1
,v1], he2,1

, . . . he2,l2
, h[qU

2
,v2], . . .}

where he is the half line issuing from edge e, ei,j is the jth edge of the traversal inside

pocket pU
i and li is the number of upper boundary edges in pU

i .

Using these half lines in the order they were computed we incrementally find

their right half plane intersection in the same way as is done to compute the kernel

of a polygon [25, 34]. This gives us the upper boundary of the spear.

To compute the lower boundary of the spear we follow the lower boundary D

of P from the point having the same x-coordinate as rU
1 toward t and maintain the

half lines issuing from rU
i , with 1 ≤ i ≤ k, having maximal interior angle to U and

such that they do not intersect the exterior of P below D; see Figure 5.8. Again

k denotes the largest integer such that the union of the k first kernel expansions is

nonempty. The intersection point between the upper and lower boundary of the spear

is called the upper spear tip and we denote it uU ; see Figures 5.7 and 5.8.

In a similar manner we can compute the lower spear spD and its lower spear

tip uD.

To every spear sp we also associate a point called the base of the spear, denoted

vU and vD depending on whether sp is an upper or lower spear. If sp is an upper

spear, consider the spear tip uU . It is the intersection point of the upper boundary of

sp with its lower boundary. The last edge of the upper boundary of sp intersects the
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Figure 5.8: Computing the upper spear and the base.

lower boundary at uU and this edge is a subset of a half line h issuing from an upper

boundary point of the polygon as described above. This upper boundary point is the

base vU of the spear; see Figures 5.7 and 5.8. We can define the base vD of a lower

spear in a similar manner.

The upper and lower spears are dependent on the placement of the previously

placed guards so we will henceforth refer to them as spU(Gp) and spD(Gp) given the

partial guard set Gp. For each spear, spU(Gp) and spD(Gp) we denote the upper spear

tip uU(Gp), the lower spear tip uD(Gp), the upper base vU(Gp), and the lower base

vD(Gp). If Gp = ∅, the upper spear spU(∅), the upper spear tip uU(∅), and the upper

base vU(∅) are well defined.

For an upper spear spU(Gp), define the shadow of spU(Gp), denoted shdU(Gp),

to be the part of the visibility polygon of vU(Gp) strictly to the right of uU(Gp). Hence,

shdU(Gp) = VPR(vU(Gp), uU(Gp)). Similarly, shdD(Gp) = VPR(vD(Gp), uD(Gp)) is the
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shadow of a lower spear spD(Gp).

We prove the following lemma.

Lemma 13. Let Gp
− and Gp

+ be two partial guard covers of P such that spU(Gp
−) and

spU(Gp
+) do not intersect, then shdU(Gp

−) ∩ shdU(Gp
+) = ∅.

Proof. We make a proof by contradiction and assume that the two visibility polygons

intersect. Assume further that spU(Gp
−) lies to the left of spU(Gp

+). Let p be a point

in the intersection of the two visibility polygons. We can connect p to uU(Gp
−) with a

line segment and then follow the line segment from uU(Gp
−) back to the base vU(Gp

−)

associated to spU(Gp
−). From vU(Gp

−) we follow the upper boundary of P to the base

vU(Gp
+) associated to spU(Gp

+), from this point on to uU(Gp
+), and then back to p. This

traversal bounds a polygon interior to P that completely contains the lower boundary

segment el of spU(Gp
+) that intersects at uU(Gp

+); see Figure 5.8. However, this is not

possible because by construction this segment must intersect the lower boundary D

of P, giving us a contradiction; see Figure 5.9.

At this point, it is important to note that a single guard placed in a spear

will guard everything to the left of the guard in the pockets associated to the spear.

However, the same region can also be guarded by placing at least two guards after

the spear tip. It could therefore be possible for a guard cover to jump a sequence of

spears and not have any guards in these. However, any guard cover that does this will

have to pay by using more guards further to the right. To formalize this concept we

bound from below the number of guards needed to the right of a sequence of spears
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Figure 5.9: Illustrating the proof of Lemma 13.

in the case that no guard is in any of them.

Let G be any guard cover for P and let p be a point in P. We partition G into

two sets Gp and Gf. Gp contains all the guards in G to the left of p, and Gf = G \ Gp

contains the guards to the right of p. If Gp is nonempty assume that it has g as its

rightmost guard and assume furthermore that all of P to the left of g is guarded by

Gp. We define the following sets recursively.

Gp
0 = Gp

Gp
i = Gp

i−1 ∪ {uU(Gp
i−1)} for i > 0

Lemma 14. Let Gp
0 , . . . ,Gp

k and Gf be sets as defined above. If all guards of Gf lie to

the right of uU(Gp
k), then Gf contains at least k + 1 guards.

Proof. By the construction of the sets Gp
i , we know that their corresponding spears do

not intersect, and hence, from Lemma 13 the corresponding shadows do not intersect

either. Let g be the rightmost guard of Gp = Gp
0 .



97

vU(Gp
i )

uU(Gp
i )

L

spU(Gp
i )

vU(Gp
i+1)

spU(Gp
i+1)

shdU(Gp
i )

uU(Gp
i+1)

shdU(Gp
i+1)

uU(Gp
k)

Figure 5.10: Illustrating the proof of Lemma 14.

Consider the vertical line L through uU(Gp
k). If there is a shadow shdU(Gp

i )

that does not intersect this vertical line then at least one guard is needed in the

polygon between g and uU(Gp
k), contradicting that G is a guard cover for P. Hence,

all shadows intersect this vertical line.

Since the k + 1 shadows intersect L, they subdivide the part of P to the

right of L into k + 1 non-intersecting regions. Because the shadows are the only

regions that see the bases vU(Gp
0) . . . vU(Gp

k) and since they do not intersect, at least

one guard is required in each shadow shdU(Gp
i ), giving us at least k + 1 guards in Gf;

see Figure 5.10.

We can, of course, prove similar results as those in Lemmas 13 and 14 for the

shadows of lower spears.

Let us define the concept of a serial guard cover Gs. First, we let, for each

guard g in Gs, the set Gs(g) be the guards of Gs with smaller or equal x-coordinate
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than g, and we let Gs
−(g) be the guards of Gs with strictly smaller x-coordinate than

g. Hence, the guards in Gs(g) lie to the left of g and the guards in Gs
−(g) lie properly

to the left of g. A guard cover Gs is serial if the following two invariant conditions

hold for all guards g in Gs:

1. The guards of Gs(g) see everything of P to the left of g.

2. There is a guard in either spU(Gs
−(g)) or in spD(Gs

−(g)). Note that this guard is

necessarily g but can be another guard with the same x-coordinate.

The next lemma shows that there is a serial guard cover of small size.

Lemma 15. If G is a guard cover for the monotone polygon P, then there is a serial

guard cover Gs for P such that |Gs| ≤ 5|G|.

Proof. Given a guard cover G we transform it to be serial as follows. Order the guards

of G = {g1, . . . , gm} from left to right. The transformation places guards into three

sets GU, GD, and GM ensuring that Gs = GU ∪ GD ∪ GM is serial.

To make the constructed guard set serial we employ a plane sweep approach

moving from left to right. As soon as the sweep line reaches a guard in G, the guard

is attached to the sweep line and moves along it following the shortest path to t. By

Lemma 11 this does not decrease visibility to the right. As the sweep proceeds we will

attach new ones as they are reached and release guards when necessary. The release

of a guard g from the sweep line gives us the position of the corresponding guard gs

in GM. We place additional guards as necessary in the sets GU and GD.
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Consider the structural changes that occur when the sweep line moves from

left to right. Let Gs
− be the current set of guards released from the sweep line. Two

things can happen:

1. A guard g ∈ G becomes the last guard to leave a spear with respect to the

previously released guards in Gs
−, sp(Gs

−), and it is then released from the sweep

line, otherwise not all points in P to the left of g are guarded. A guard gs

positioned at the release point of g is added to GM.

2. The sweep line reaches the spear tip u(Gs
−) without having released a guard.

In this case, the spear sp(Gs
−) is empty of guards. We add a guard gs

− at the

position of the spear tip u(Gs
−) to one of GU and GD, such that gs

− is in GU, if

sp(Gs
−) is an upper spear and in GD, if sp(Gs

−) is a lower spear. In addition, we

release an arbitrary guard g from the sweep line, if there is one attached to it,

and add a guard gs to GM positioned at g.

When the sweep line reaches t, those guards still attached to it are removed (except

for possibly one) giving us the serial guard cover Gs.

To count the number of guards placed by this process we have immediately

that |GM | ≤ |G|. Furthermore, from Lemma 14, we can associate each guard in GU

and GD either with the one released at the same x-coordinate or one inside the shadow

of the associated spear. Since no two shadows intersect we have that a guard in G is

associated to at most two in GU and two in GD. Hence, |GU | ≤ 2|G| and |GD| ≤ 2|G|

giving us that |Gs| ≤ |G|+ |GU |+ |GD| ≤ 5|G|.
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Algorithm Guard-Monotone-Polygons

Input: A monotone polygon P

Output: A guard cover for P

1 G := ∅
2 while not all upper pockets are guarded do

2.1 Compute spU(G) and uU(G)
2.2 Place a guard g at uU(G); G := G ∪ {g}
2.3 Compute

⋃

g∈G VP(g), let pU be the first upper pocket, and let L be the
vertical line segment through g

2.4 Place a guard g′ on L so that uU(G∪{g′}) lies as far to the right as possible;
G := G ∪ {g′}

endwhile

3 Repeat Step 2 for the lower pockets to guard these

4 Guard the middle pockets if any such remain

return G
End Guard-Monotone-Polygons

We can now give the details of our guarding algorithm.

Each iteration of Step 2 involves computing the upper spear and the upper

spear tip, which we can do in linear time as we have shown. Step 2.4 can be done

efficiently as follows: Let VP(G) be the part of the polygon seen so far. We begin by

placing g′ at the top of the line segment L and compute the upper spear with g′ in

the guard set. Then, we slide g′ along L continuously updating the point uU(G∪{g′})

as we go along. The structural changes of spU(G ∪ {g′}) occur at certain key points

on L. These are:

1. when the convex vertex of VP(G) ∪ VP(g′) on an edge adjacent to an upper

pocket becomes incident to a vertex of the polygon boundary U .

2. when an edge of the boundary of spU(G∪{g′}) becomes incident to two vertices
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Figure 5.11: Computing the rightmost spear tip.

of the upper boundary U .

3. when three consecutive half lines issuing from pockets intersect at the same

point.

The key points occur at an at most cubic number of discrete points on L. (The

maximum number of possible common intersection points between three lines among n

lines.) Moving g′ in between the key points will make uU(G∪{g′}) move monotonically

to the right or to the left. Hence, by computing the key points, which can be done

incrementally in at most linear time per step, we can find the point on L where

uU(G ∪ {g′}) lies as far to the right as possible; see Figure 5.11. Step 3 is performed

in a similar manner and within the same complexity bounds as Step 2.

It remains to show how to guard the middle pockets, if any such remain after

Step 3 of the algorithm. To show that middle pockets can indeed occur consider

the monotone polygon of Figure 5.12 after Step 3 of our algorithm. The algorithm

places guards g1, g
′
1, g2, g

′
2, g3, and g′

3 during Step 2. These guards also see the lower
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Figure 5.12: Example of a middle pocket.

boundary so no additional guards are placed during Step 3.

We prove that any middle pocket is contained in a polygon having at most

two reflex vertices and can therefore be guarded by at most two guards.

Lemma 16. Let G be the guard set of monotone polygon P obtained after Step 3

of our algorithm and let p be a point in a middle pocket of G. If gl and gr are the

two guards in G immediately to the left and right of p, respectively, then there is a

connected polygonal region having at most six vertices of which at most two are reflex

that contains all unseen points between gl and gr.

Proof. Let L be a vertical line slightly to the right of gl so that no unseen points lie

between gl and L. Similarly, let R be a vertical line slightly to the left of gr so that

no unseen points lie between gr and R. Let gU
r be the first guard placed at an upper
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Figure 5.13: Illustrating the proof of Lemma 16.

spear tip after R by Step 2 of our algorithm. Let pU
r be the leftmost point on U , the

upper boundary, seen by gU
r and let Gl be the guards of G that lie to the left of L.

Consider the polygonal region pU
r between L and R, and above the line from

gU
r to pU

r ; see Figure 5.13. We claim that no unseen point can lie in pU
r . Assume

to the contrary that there is a point p in pU
r , not on the boundary, that is not seen

by gU
r . Construct the shortest path SP (gU

r , p) inside P from gU
r to p. Let the first

segment of SP (gU
r , p) have the end points gU

r and p′. Extend this segment until it

hits the upper boundary at p′′. The upper boundary from p′′ to p′ is not seen from gU
r

so by construction this region must be seen from guards in Gl. Let G′l be the guards

of Gl that see points of SP (p, p′) and let G′′l be the guards of Gl that see points of

SP (p, p′′). No guard can be in both sets since it would then see p.

Let q′ be the leftmost point on the upper boundary that any guard in G ′l can

see and let g′ a guard in this set that sees q′. Similarly let q′′ be the leftmost point
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on the upper boundary that any guard in G ′′l can see and let g′′ be a guard in this

set that sees q′′. The point q′ cannot lie to the right of q′′, since then there are upper

boundary points between p′′ and p′ not seen by Gl. Hence, the line segment from

p to g′ must intersect the upper boundary and the line segment from p to g′′ must

intersect the lower boundary. This is impossible if both g′ and g′′ are to see boundary

points between p′′ and p′. Therefore all points in pU
r are seen by G.

If we let gU
l be the guard that sees the rightmost upper boundary point pU

l

among all points in Gl and let pU
l be the part between L and R above the line from

gU
l to pU

l ; see Figure 5.13. Assuming that there is an interior point p in pU
l not seen

by gU
r we can prove a contradiction in the same way as before, and hence, all points

in pU
l are seen by guards from G.

Similarly defining pD
r and pD

l as the regions below the corresponding lines

[gD
r , pD

r ] and [gD
l , pD

l ] for the lower boundary, we can prove that all points in these

regions must be seen by guards in G.

Let PM be the region of P between L and R. Define the region M to be

M = PM \ (pU
r ∪ pU

l ∪ pD
r ∪ pD

l );

see Figure 5.14. The region M contains all the unseen points in PM and the boundary

of M has at most six vertices with at most two of them being reflex.

To implement Step 4 of our algorithm we perform a third sweep from left to

right and incrementally compute the union of the visibility polygons of the guards

placed to the left of the sweep line. As soon as we encounter a middle pocket to
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Figure 5.14: Worst case example illustrating the region M of
Lemma 16.

the left of the sweep line, we can apply Lemma 16 and establish the region M, more

specifically, the intersection point wU between the lines [gU
r , pU

r ] and [gU
l , pU

l ], and the

intersection point wD between the lines [gD
r , pD

r ] and [gD
l , pD

l ] where we place guards

that together will see all of M; see Figures 5.13 and 5.14.

Next, we establish the approximation factor of the algorithm.

Lemma 17. Our algorithm places O(OPT ) guards in P, where OPT is the size of

the smallest guard cover for P.

Proof. To bound the total number of guards, we establish the number of guards placed

in each of the Steps 2–4. To do so we compare the number of guards placed in each

step with the size of a serial guard cover Gs.

For each guard gs ∈ Gs we denote by q(gs), the point of U straight above

gs and we denote by r(gs), the rightmost upper boundary point seen continuously

along U from q(gs), i.e., gs sees all points on U between q(gs) and r(gs) but no further.
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Figure 5.15: Illustrating the proof of Lemma 17.

Consider first Step 2. Let G2 be the guard set placed by our algorithm in

Step 2. In the ith iteration of the loop our algorithm places guards gi and g′
i having

the same x-coordinate.

If Gs has a guard gs in the interval between gi−1 and gi, we can associate the

guards gi and g′
i to gs. We call such an association an I-association.

If Gs has no guard in the interval between gi−1 and gi, then let Gs
l be the subset

of guards in Gs that lie to the left of gi−1. In addition, let G′sl be the subset of guards

gs in Gs
l for which r(gs) is to the right of gi−1. Note that G′sl cannot be empty, as

then Gs has no guard in the current upper spear spU(Gs
l ), thus contradicting that Gs

is serial; see Figure 5.15.

Now, let gs
l ∈ G′sl be the guard for which r(gs

l ) is leftmost among all the

guards in G′sl . We argue that r(gs
l ) lies on U between gi−1 and gi. Assume for the

contradiction that it does not. It then lies strictly to the right of gi. Let L be the
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vertical line through gi−1 and g′
i−1 and let p be the lowest point of L that r(gs

l ) sees;

see Figure 5.15. The point p sees all of U from q(gs
l ) to r(gs

l ) since any point in this

interval is seen by gs
l . In this case, by placing g′

i−1 on p, our algorithm would have

been able to move gi further to the right, a contradiction, since in Step 2.4 of our

algorithm, we place g′
i−1 on L so that gi is as far to the right as possible. Thus, we

know that we can associate gi and g′
i to gs

l and we call this type of association, an

X-association. No other guards gj and g′
j, j 6= i, placed by our algorithm in Step 2

can be X-associated to gs
l , since r(gs

l ) is not on U between gj−1 and gj

Hence, any guard gs in Gs is associated to at most four guards from G2, two

of which are I-associated to gs and two of which are X-associated. We have that

|G2| ≤ 4|Gs| ∈ O(OPT ),

since we can choose Gs to be a smallest serial guard cover which by Lemma 15 is of

size O(OPT ).

Similarly, let G3 be the guard set placed by our algorithm in Step 3. We can

prove that

|G3| ≤ 4|Gs| ∈ O(OPT )

in the same way as above.

Finally, denote by G4, the guards placed by our algorithm in Step 4. By

Lemma 16 we can simply associate the two guards placed at wU and wD to guard the

middle pockets between two guards gl and gr, placed in the previous steps, with one
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of them, say gl. Hence,

|G4| ≤ 2(|G2|+ |G3|) ∈ O(OPT );

see also Addario-Berry et al [1].

We have proved the following theorem.

Theorem 18. The algorithm Guard-Monotone-Polygons computes a guard cover for

a monotone polygon P of size O(OPT ) in polynomial time, where OPT is the size of

the smallest guard cover for P.
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CHAPTER 6

CONCLUSION

6.1 Summary

This document has given a summary of my work in the areas of guarding ter-

rains and guarding art galleries. My contributions have included a 4-approximation

for the terrain guarding problem. Using some the observations from the 4-approximation

and developments made elsewhere in other geometric set covering problems, the

(1 + ǫ)-approximation was discovered. This document also provides an NP -hardness

proof for the terrain guarding problem. This coupled with the (1 + ǫ)-approximation

settles the computational complexity problem for this problem. A minor question

that remains regarding the complexity of terrain guarding is whether or not it is

fixed-parameter tractable.

This document also highlights an NP -hardness proof for vertex guarding

monotone polygons. There is also a O(1)-approximation result for point guarding

a monotone polygon.

The 4-approximation shown in Chapter 3 was shown by Elbassioni et al.

in [17]. The NP -hardness result from Chapter 2 is shown in [31]. The (1 + ǫ)-

approximation from Chapter 4 is shown in [23]. Both of the art gallery results from

Chapter 5 are shown in [32].
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6.2 Future Work

Future work may involve working on different and more difficult geometric set

cover problems. Problems might include looking into better approximation algorithms

for the original art gallery problem. Improving the approximation algorithm for

monotone polygons and extending to vertex guarding are areas of interest. I believe

some of the observations made with the terrain algorithms could translate into better

algorithms for guarding art galleries. Little is known about point guarding a simple

polygon and researching this problem is also of interest. Another potential problem

involves the terrain guarding problem with limited visibility. The terrain guarding

problem studied in this thesis allows guards to see forever unless blocked by the

terrain. The problem changes with the added restriction of limited visibility.

I am also interested in developing some heuristics for each of these problems.

I believe some of the characteristics of terrain guarding that have been uncovered

would lead to fast heuristics that could outperform the many combinatorial set cover

heuristics already available. Some heuristics might lead to improved approximation

algorithms for the art gallery problems if new characteristics are discovered.
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In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors, WADS,
volume 4619 of Lecture Notes in Computer Science, pages 163–174. Springer,
2007.

[14] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process.
Lett., 100(6):238–245, 2006.

[15] S. Eidenbenz. Inapproximability of Visibility Problems on Polygons and Terrains.
PhD thesis, 2000.

[16] Stephan Eidenbenz. Inapproximability results for guarding polygons without
holes. In Lecture Notes in Computer Science, pages 427–436. Springer, 1998.

[17] Khaled Elbassioni, Erik Krohn, Domagoj Matijevic, Julian Mestre, and Domagoj
Severdija. Improved approximations for guarding 1.5-dimensional terrains. In
Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium
on Theoretical Aspects of Computer Science (STACS 2009), Dagstuhl, Germany,
2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[18] Khaled Elbassioni, Domagoj Matijevic, Julian Mestre, and Domagoj Severdija.
Improved approximations for guarding 1.5-dimensional terrains. CoRR,
abs/0809.0159v1, 2008.

[19] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approxima-
tion schemes for geometric intersection graphs. SIAM Journal on Computing,
34(6):1302–1323, 2005.

[20] S. Fisk. A short proof of chvatal’s watchman theorem. Journal of Combinatorial
Theory Series B, 24:374+, 1978.

[21] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput., 16(6):1004–1022, 1987.

[22] S. Ghosh. Approximation algorithms for art gallery problems. In Proc. Canadian
Information Processing Society Congress, 1987.



113

[23] Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi R. Varadarajan. An
approximation scheme for terrain guarding. In Irit Dinur, Klaus Jansen, Joseph
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